Journal of Materials Science

, Volume 44, Issue 17, pp 4511–4521 | Cite as

Application of scanning electrochemical microscope in the study of corrosion of metals

  • Lin Niu
  • Yuehua Yin
  • Weikuan Guo
  • Min Lu
  • Ruijie Qin
  • Shenhao Chen


Scanning electrochemical microscope (SECM) has become a very useful and powerful technique for probing a variety of electrochemical reactions in corrosion process due to its high spatial resolution and electrochemical sensitivity to characterize the topography and redox activities of the metal/electrolyte solution interface. Its capability for the direct identification of chemical species in localized corrosion processes with high spatial resolution would be more advantageous compared to other local probe techniques with only morphological characterization. In this review, the applications of the SECM in the study of early stages of localized corrosion, electroactive defect sites in passive films, local initiation of pits, degradation of coating properties on steels, and some combined methods through SECM integrated with other techniques have been summarized and commented. Finally, the optimization for SECM’s experiment design and operation as well as foreseeable application range has been proposed.


Localize Corrosion Passive Current Density Electrochemical Quartz Crystal Microbalance High Lateral Resolution Scan Kelvin Probe Force Microscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the Special Funds for the Major State Basic Research Projects (973 Projects) (Grant No. 2006CB605004) and the Natural Science Foundation of Shandong Province, China (Grant No. Y2006B16).


  1. 1.
    Strehblow HH (1995) In: Marcus P, Oudor J (eds) Corrosion mechanisms in theory and practice. Marcel Dekker, New York, p 201Google Scholar
  2. 2.
    Perez N (2004) Electrochemistry and corrosion science. Kluwer, New YorkCrossRefGoogle Scholar
  3. 3.
    de Wit JWH, van der Weijde DH, de Jong A, Blekkenhorst F, Meijers SD (1998) In: Sixth international symposium on electrochemical methods in corrosion research, Pt. 1 and 2, vol 289–292, p 69Google Scholar
  4. 4.
    Frankel GS (1998) J Electrochem Soc 145:2186CrossRefGoogle Scholar
  5. 5.
    Katemann BB, Inchauspe CG, Castro PA, Schulte A, Calvo EJ, Schuhmann W (2003) Electrochim Acta 48:1115CrossRefGoogle Scholar
  6. 6.
    Gabrielli C, Joiret S, Keddam M, Portail N, Rousseau P, Vivier V (2008) Electrochim Acta 53:7539CrossRefGoogle Scholar
  7. 7.
    Oltra R, Maurice V, Akid R, Marcus P (eds) (2007) Local probe techniques for corrosion research. Woodhead, CambridgeGoogle Scholar
  8. 8.
    Khobaib M, Rensi A, Matakis T, Donley MS (2001) Prog Org Coat 41:266CrossRefGoogle Scholar
  9. 9.
    Lu BT, Chen ZK, Luo JL, Patchett BM, Xu ZH (2005) Electrochim Acta 50:1391CrossRefGoogle Scholar
  10. 10.
    Krawiec H, Vignal V, Oltra R (2004) Electrochem Commun 6:655CrossRefGoogle Scholar
  11. 11.
    Simões AM, Bastos AC, Ferreira MG, González-García Y, González S, Souto RM (2007) Corros Sci 49:726CrossRefGoogle Scholar
  12. 12.
    Bastos AC, Zheludkevich ML, Ferreira MGS (2008) Prog Org Coat 63:282CrossRefGoogle Scholar
  13. 13.
    Katemann BB, Schulte A, Calvo EJ, Koudelka-Hep M, Schuhmann W (2002) Electrochem Commun 4:134CrossRefGoogle Scholar
  14. 14.
    Li MC, Cheng YF (2008) Electrochim Acta 53:2831CrossRefGoogle Scholar
  15. 15.
    Sykes JM, Doherty M (2008) Corros Sci 50:2773CrossRefGoogle Scholar
  16. 16.
    Suter T, Böhni H (1998) Electrochim Acta 43:2843CrossRefGoogle Scholar
  17. 17.
    Engstrom RC, Weber M, Wunder DJ, Burgess R, Winquist S (1986) Anal Chem 58:844CrossRefGoogle Scholar
  18. 18.
    Lister TE, Pinhero PJ (2002) Electrochem Solid-State Lett 5:B33CrossRefGoogle Scholar
  19. 19.
    Liu H-Y, Fan F-RF, Lin CW, Bard AJ (1986) J Am Chem Soc 108:3838CrossRefGoogle Scholar
  20. 20.
    Bard AJ, Fan F-RF, Kwak J, Lev O (1989) Anal Chem 61:132CrossRefGoogle Scholar
  21. 21.
    Bard AJ, Fan F-RF, Pierce DT, Unwin PR, Wipf DO, Zhou FM (1991) Science 254:68PubMedCrossRefADSGoogle Scholar
  22. 22.
    Tóth K, Nagy G, Wei C, Bard AJ (1995) Electroanalysis 7:801CrossRefGoogle Scholar
  23. 23.
    Zhou JF, Zu YB, Bard AJ (2000) J Electroanal Chem 491:22CrossRefGoogle Scholar
  24. 24.
    Bi SP, Liu B, Fan FRF, Bard AJ (2005) J Am Chem Soc 127:3690PubMedCrossRefGoogle Scholar
  25. 25.
    Zhan D, Li X, Zhan W, Fan F-RF, Bard AJ (2007) Anal Chem 79:5225PubMedCrossRefGoogle Scholar
  26. 26.
    Bard AJ, Fan F-R, Mirkin MV (2001) In: Bard AJ, Mirkin MV (eds) Scanning electrochemical microscopy. Marcel Dekker, New YorkGoogle Scholar
  27. 27.
    Wittstock G, Burchardt M, Pust SE, Shen Y, Zhao C (2007) Angew Chem Int Ed 46:1584CrossRefGoogle Scholar
  28. 28.
    Niu L, Cao X, Lu M (2007) In: Jiang PN (ed) Electroanalytical chemistry research developments. Nova Science, Hauppauge, pp 1–5Google Scholar
  29. 29.
    González-García Y, Burstein GT, González S, Souto RM (2004) Electrochem Commun 6:637CrossRefGoogle Scholar
  30. 30.
    Pistorius PC, Burstein GT (1992) Philos Trans R Soc Lond A 341:531CrossRefADSGoogle Scholar
  31. 31.
    Williams DE, Westcott C, Fleischmann M (1985) J Electrochem Soc 132:1804CrossRefGoogle Scholar
  32. 32.
    Frankel GS, Stockert L, Hunkeler F, Bohni H (1987) Corrosion 43:429Google Scholar
  33. 33.
    Bohni H, Stockert L (1989) Mater Sci Forum 44:313CrossRefGoogle Scholar
  34. 34.
    Isaacs HS (1989) Corros Sci 29:313CrossRefGoogle Scholar
  35. 35.
    Pistorius PC, Burstein GT (1992) Corros Sci 33:1885CrossRefGoogle Scholar
  36. 36.
    Stewart J, Balkwill PH, Williams DE (1994) Corros Sci 36:1213CrossRefGoogle Scholar
  37. 37.
    Zhu Y, Williams DE (1997) J Electrochem Soc 144:L43CrossRefGoogle Scholar
  38. 38.
    Williams DE, Mohiuddin TF, Zhu YY (1998) J Electrochem Soc 145:2664CrossRefGoogle Scholar
  39. 39.
    Burstein GT, Vines SP (2001) J Electrochem Soc 148:B504CrossRefGoogle Scholar
  40. 40.
    Bastos AC, Simões AM, González S, González-García Y, Souto RM (2004) Electrochem Commun 6:1212CrossRefGoogle Scholar
  41. 41.
    Baltes N, Thouin L, Amatore C, Heinze J (2004) Angew Chem Int Ed 43:1431CrossRefGoogle Scholar
  42. 42.
    Riley AM, Wells DB, Williams DE (1991) Corros Sci 32:1307CrossRefGoogle Scholar
  43. 43.
    Burstein GT, Mattin SP (1992) Philos Mag Lett 66:127CrossRefADSGoogle Scholar
  44. 44.
    Williams DE, Newman RC, Kelly RG, Song Q (1991) Nature 350:216CrossRefADSGoogle Scholar
  45. 45.
    Wranglen G (1969) Corros Sci 9:585CrossRefGoogle Scholar
  46. 46.
    Szlarska-Smialowska Z (1972) Corrosion 28:388Google Scholar
  47. 47.
    Eklund GE (1974) J Electrochem Soc 121:467CrossRefGoogle Scholar
  48. 48.
    Castle JE, Ke R (1990) Corros Sci 30:409CrossRefADSGoogle Scholar
  49. 49.
    Newman RC (1985) Corros Sci 24:331CrossRefGoogle Scholar
  50. 50.
    Ke R, Alkire R (1995) J Electrochem Soc 142:4056CrossRefGoogle Scholar
  51. 51.
    Paik CH, White HS, Alkire RC (2000) J Electrochem Soc 147:4120CrossRefGoogle Scholar
  52. 52.
    Lister TE, Pinhero PJ (2003) Electrochim Acta 48:2371CrossRefGoogle Scholar
  53. 53.
    Bard AJ, Fan FF, Mirkin M (1994) In: Bard AJ (ed) Electroanalytical chemistry, vol 18. Marcel Dekker, New York, p 287Google Scholar
  54. 54.
    Lister TE, Pinhero PJ (2002) Electrochem Solid State Lett 5:B33CrossRefGoogle Scholar
  55. 55.
    Völker E, Inchauspe CG, Calvo EJ (2006) Electrochem Commun 8:179CrossRefGoogle Scholar
  56. 56.
    Fushimi K, Lill KA, Habazaki H (2007) Electrochim Acta 52:4246CrossRefGoogle Scholar
  57. 57.
    Yin YH, Niu L, Lu M, Guo WK, Chen SH (2009) Appl Surf Sci (revised)Google Scholar
  58. 58.
    Serebrennikova I, White HS (2001) J Electrochem Soc 4:B4Google Scholar
  59. 59.
    Casillas N, Charlebois SJ, Smyrl WH, White HS (1993) J Electrochem Soc 140:L142CrossRefGoogle Scholar
  60. 60.
    Casillas N, Charlebois SJ, Smyrl WH, White HS (1994) J Electrochem Soc 141:636CrossRefGoogle Scholar
  61. 61.
    Basame SB, White HS (1998) J Phys Chem 102:9812Google Scholar
  62. 62.
    Basame SB, White HS (1999) Langmuir 15:819CrossRefGoogle Scholar
  63. 63.
    Frichet A, Gimenez P, Keddam M (1993) Electrochim Acta 38:1957CrossRefGoogle Scholar
  64. 64.
    Serebrennikova I, Lee S, White HS (2002) Faraday Discuss 121:199PubMedCrossRefGoogle Scholar
  65. 65.
    Still JW, Wipf DO (1997) J Electrochem Soc 144:2657CrossRefGoogle Scholar
  66. 66.
    Fushimi K, Azumi K, Seo M (1999) Proc Electrochem Soc 98-17:626Google Scholar
  67. 67.
    Fushimi K, Seo M (2001) J Electrochem Soc 148:B450CrossRefGoogle Scholar
  68. 68.
    Vuillemin B, Philippe X, Oltra R, Vignal V, Coudreuse L, Dufour LC, Finot E (2003) Corros Sci 45:1143CrossRefGoogle Scholar
  69. 69.
    Fushimi K, Azumi K, Seo M (2000) J Electrochem Soc 147:552CrossRefGoogle Scholar
  70. 70.
    Gabrielli C, Joiret S, Keddam M, Perrot H, Portail N, Rousseau P, Vivier V (2006) J Electrochem Soc 153:b68CrossRefGoogle Scholar
  71. 71.
    Gabrielli C, Joiret S, Keddam M, Perrot H, Portail N, Rousseau P, Vivier V (2007) Electrochim Acta 52:7706CrossRefGoogle Scholar
  72. 72.
    Shreir LL, Jarman RA, Burstein GT (eds) (1994) Corrosion, vol 2, 3rd edn. Butterworth-Heinemann, Oxford (Chap. 14)Google Scholar
  73. 73.
    Grundmeier G, Simoes A (2003) In: Bard AJ, Stratmann M (eds) Encyclopedia of electrochemistry, vol 4. Wiley-VCH, Weinheim, p 499Google Scholar
  74. 74.
    Souto RM, González-García Y, González S, Burstein GT (2004) Corros Sci 46:2621CrossRefGoogle Scholar
  75. 75.
    Bastos AC, Simões AM, González S, González-García Y, Souto RM (2005) Prog Org Coat 53:177CrossRefGoogle Scholar
  76. 76.
    Souto RM, González-García Y, González S (2005) Corros Sci 47:3312CrossRefGoogle Scholar
  77. 77.
    Souto RM, González-García Y, González S (2008) Corros Sci 50:1637CrossRefGoogle Scholar
  78. 78.
    Jones CE, Macpherson JV, Barber ZH, Somekh RE, Unwin PR (1999) Electrochem Commun 1:55CrossRefGoogle Scholar
  79. 79.
    Macpherson JV, Unwin PR (2000) Anal Chem 72:276PubMedCrossRefGoogle Scholar
  80. 80.
    Kranz C, Friedbacher G, Mizaikoff B, Lugstein A, Smolier J, Bertagnolli E (2001) Anal Chem 73:2491PubMedCrossRefGoogle Scholar
  81. 81.
    Meier J, Friedrich KA, Stimming U (2002) Faraday Discuss 121:365PubMedCrossRefGoogle Scholar
  82. 82.
    Treutler TH, Wittstock G (2003) Electrochim Acta 48:2923CrossRefGoogle Scholar
  83. 83.
    Davoodi A, Pan J, Leygraf C, Norgren S (2005) Electrochem Solid State Lett 8:b21CrossRefGoogle Scholar
  84. 84.
    Davoodi A, Pan J, Leygraf C, Norgren S (2007) Electrochim Acta 52:7697CrossRefGoogle Scholar
  85. 85.
    Simões A, Battocchi D, Tallman D, Bierwagen G (2008) Prog Org Coat 63:260CrossRefGoogle Scholar
  86. 86.
    Büchler M, Kerimo J, Guillaume F, Smyrl WH (2000) J Electrochem Soc 147:3691CrossRefGoogle Scholar
  87. 87.
    Knutson TL, Guillaume F, Lee W-J, Alhoshan M, Smyrl WH (2003) Electrochim Acta 48:3229CrossRefGoogle Scholar
  88. 88.
    Gabrielli C, Keddam M, Torresi R (1991) J Electrochem Soc 138:2657CrossRefGoogle Scholar
  89. 89.
    Horrocks BR, Schmidtke D, Heller A, Bard AJ (1993) Anal Chem 65:3605PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Lin Niu
    • 1
  • Yuehua Yin
    • 1
  • Weikuan Guo
    • 1
  • Min Lu
    • 1
  • Ruijie Qin
    • 1
  • Shenhao Chen
    • 1
    • 2
  1. 1.School of Chemistry and Chemical EngineeringShandong UniversityJinanChina
  2. 2.Institute of Metal ResearchChinese Academy of SciencesShenyangChina

Personalised recommendations