Skip to main content
Log in

Synthesis and characterization of WO3 and WS2 hexagonal phase nanostructures and catalytic test in sulfur remotion

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The aim of the present study was the synthesis and characterization of WO3 and WS2 nanostructures in hexagonal phases and the evaluation of the latter as catalyst in the dibenzothiophene hydrodesulfurization reaction. 2H-WS2 nanostructures were obtained from a precursor WO3 nanostructure by a two-step hydrothermal/gas phase reaction under well-controlled conditions. All nanostructures were characterized by X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, and the specific surface area of the materials was measured using the BET method. The catalytic activity and selectivity measurements of the resulting unsupported WS2 nanocatalysts are also presented. Catalytic activity was found to be highest for the 2H-WS2 from the WO3 nanostructure sulfided at 773 K (rate constant of 3 × 10−7 mol/g s).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ouerfelli J, Srivastava SK, Bernède JC, Belgacem S (2009) Vacuum 83:308

    Article  Google Scholar 

  2. Tributsch H (1979) Sol Energy Mater 1:257

    Article  CAS  Google Scholar 

  3. Chinas-Castillo F, Lara-Romero J, Alonso-Nuñez G, Barceinas-Sánchez JDO, Jiménez-Sandoval S (2007) Tribol Lett 26(2):137

    Article  CAS  Google Scholar 

  4. Alonso G, Chianelli RR (2004) J Catal 221:657

    Article  CAS  Google Scholar 

  5. Knudsen KG, Cooper BH, Tøpsoe H (1999) Appl Catal A 89:205

    Article  Google Scholar 

  6. Park Y, Oh E-S, Rhee H-K (1997) Ind Eng Chem Res 36:5083

    Article  CAS  Google Scholar 

  7. Camacho Bragado GA, Elechiguerra JL, Olivas A, Fuentes S, Galván D, Yacamán José M (2005) J Catal 234:182–190

    Article  CAS  Google Scholar 

  8. Albiter MA, Huirache-Acuña R, Paraguay-Delgado F, Rico JL, Alonso-Núñez G (2006) Nanotechnology 17:3473

    Article  CAS  Google Scholar 

  9. Paraguay-Delgado F, Albiter MA, Huirache-Acuña R, Verde Y, Alonso-Núñez G (2007) J Nanosci Nanotechnol 7(11):3677

    Article  CAS  Google Scholar 

  10. Olivas A, Alonso G, Fuentes S (2006) Top Catal 37(3–4):175

    Article  Google Scholar 

  11. Zhu YQ, Hsu WK, Grobert N, Chang BH, Terrones M, Terrones H, Kroto HW, Walton DRM (2000) Chem Mater 12:1190

    Article  CAS  Google Scholar 

  12. Vollath D, Szabó V (1998) Mater Lett 35:236–244

    Article  CAS  Google Scholar 

  13. Kurumada M, Kido O, Sato T, Suzuki H, Kimura Y, Kamitsuji K, Saito Y, Kaito C (2005) J Cryst Growth 275:e1673

    Article  CAS  Google Scholar 

  14. Li YD, Li XL, He RR, Zhu J, Dheng ZX (2002) J Am Chem Soc 124(7):1411

    Article  CAS  Google Scholar 

  15. Tenne R, Margulis L, Genut M, Hodes G (1992) Nature 360:444

    Article  CAS  Google Scholar 

  16. Therese HA, Li J, Kolb U, Tremel W (2005) Solid State Sci 7:67

    Article  CAS  Google Scholar 

  17. Frey GL, Rothschild A, Sloan J, Rosentsveig R, Popovitz-Biro R, Tenne R (2001) J Solid State Chem 162:300

    Article  CAS  Google Scholar 

  18. Rothschild A, Popovitz-Biro R, Lourie O, Tenne R (2000) J Phys Chem B 104:8976

    Article  CAS  Google Scholar 

  19. Liang KS, Chianelli RR, Chien FZ, Moss SC (1986) J Non-Cryst Solids 79:251

    Article  CAS  Google Scholar 

  20. Strutt ER, Radetic T, Olevsky EA, Meyers MA (2008) J Mater Sci 43:5905. doi:https://doi.org/10.1007/s10853-008-2848-y

    Article  CAS  Google Scholar 

  21. Blanford CF, Carter CB, Stein A (2008) J Mater Sci 43:3539. doi:https://doi.org/10.1007/s10853-008-2550-0

    Article  CAS  Google Scholar 

  22. Costa PMFJ, Golberg D, Shen G, Metome M, Bando Y (2008) J Mater Sci 43:1460. doi:https://doi.org/10.1007/s10853-007-2307-1

    Article  CAS  Google Scholar 

  23. Cook BA, Wei XZ, Harringa JL, Kramer MJ (2008) J Mater Sci 42:7643. doi:https://doi.org/10.1007/10853-007-1898-x

    Article  Google Scholar 

  24. Chen CL, Nagase T, Mori H (2009) J Mater Sci 44:1965. doi:https://doi.org/10.1007/10853-009-3302-5

    Article  CAS  Google Scholar 

  25. Zak A, Feldman Y, Alperovich V, Rosentsveig R, Tenne R (2000) J Am Chem Soc 122:11108

    Article  CAS  Google Scholar 

  26. Feldman Y, Frey GL, Homyonfer M, Lyakkhovitskaya V, Margulis L, Cohen H, Hodes G, Hutchison JL, Tenne R (1996) J Am Chem Soc 118:5362

    Article  CAS  Google Scholar 

  27. Ha J-H, Muralidharan P, Kim DK (2009) J Alloys Compd 475(1–2):446

    Article  CAS  Google Scholar 

  28. Wilson JA, Yoffe AD (1969) Adv Phys 18:193

    Article  CAS  Google Scholar 

  29. Kasztelan S (1990) Langmuir 6:590

    Article  CAS  Google Scholar 

  30. Chianelli RR (1982) Int Rev Phys Chem 2:127

    Article  CAS  Google Scholar 

  31. Venkateswara Rao K, Sunandana CS (2008) J Mater Sci 43:146. doi:https://doi.org/10.1007/s10853-007-2131-7

    Article  Google Scholar 

  32. Albiter MA, Huirache-Acuña R, Paraguay-Delgado F, Zaera F, Alonso-Núñez G (2008) J Nanosci Nanotechnol 8(12):6437

    Article  CAS  Google Scholar 

  33. Huirache-Acuña R, Flores MIZ, Albiter MA, Estrada-Guel I, Ornelas C, Paraguay-Delgado F, Rico JL, Bejar-Gómez L, Alonso-Núñez G, Martínez-Sánchez R (2006) Adv Technol Mater Mater Process 8(2):140

    Google Scholar 

  34. Remŝkar M, Mrzel A (2003) Vacuum 71:177

    Article  Google Scholar 

  35. Pérez de la Rosa M, Texier S, Berhault G, Camacho A, Yacamán MJ, Mehta A, Fuentes S, Ascencion Montoya J, Murrieta F, Chianelli RR (2004) J Catal 225:288

    Article  Google Scholar 

  36. Whitehurst DD, Isoda T, Mochida I (1998) Adv Catal 42:345

    CAS  Google Scholar 

  37. Lauritsen JV, Bollinger MV, Laegsgaard E, Jacobsen KW, Norskov JK, Clausen BS, Tøpsoe H, Besenbacher F (2004) J Catal 221:510

    Article  CAS  Google Scholar 

  38. Salmeron M, Somorjai GA, Wold A, Chianelli R, Liang KS (1982) Chem Phys Lett 90:105

    Article  CAS  Google Scholar 

  39. Bollinger MV, Lauritsen JV, Jacobsen KW, Norskov JK, Helveg S, Besenbacher F (2001) Phys Rev Lett 87:196803

    Article  CAS  Google Scholar 

  40. Goodenough JB (1982) In: Barry HF, Mitchell P (eds) 4th International conference on the chemistry and uses of molybdenum. Climax Molybdenum, Ann Arbor, MI, p 1

Download references

Acknowledgments

The authors appreciate the valuable technical assistance of C. Ornelas, W. Antúnez, and E. Torres. This work was financially supported by CONACYT 58280-Y, DGAPA-UNAM, IN102509 and postdoctoral scholarship-UNAM. Isabel Pérez Montfort corrected the English version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Huirache-Acuña.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huirache-Acuña, R., Paraguay-Delgado, F., Albiter, M.A. et al. Synthesis and characterization of WO3 and WS2 hexagonal phase nanostructures and catalytic test in sulfur remotion. J Mater Sci 44, 4360–4369 (2009). https://doi.org/10.1007/s10853-009-3652-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-3652-z

Keywords

Navigation