Journal of Materials Science

, Volume 44, Issue 16, pp 4326–4333 | Cite as

Development of sensors based on CuO-doped SnO2 hollow spheres for ppb level H2S gas sensing

  • Lifang He
  • Yong Jia
  • Fanli Meng
  • Minqiang Li
  • Jinhuai LiuEmail author


An effort has been made to develop a new kind of SnO2–CuO gas sensor which could detect an extremely small amount of H2S gas at relatively low working temperature. The sensor nanomaterials were prepared from SnO2 hollow spheres (synthesized by employing carbon microspheres as temples) and Cu precursor by dipping method. The composition and structural characteristics of the as-prepared CuO-doped SnO2 hollow spheres were studied by X-ray photoelectron spectroscopy, X-ray powder diffraction, scanning electron microscopy, and transmission electron microscopy. Gas-sensing properties of CuO-doped SnO2 hollow sphere were also investigated. It was found that the sensor showed good selectivity and high sensitivity to H2S gas. A ppb level detection limit was obtained with the sensor at the relatively low temperature of 35 °C. Such good performances are probably attributed to the hollow sphere nanostructures. Our results imply that materials with hollow sphere nanostructures are promising candidates for high-performance gas sensors.


SnO2 Hollow Sphere SnO2 Nanoparticles Carbon Microsphere SnO2 Particle 



We are grateful to the financial support for this work from the Knowledge Innovation Program of the Chinese Academy of Sciences, the National High Technology Research and Development Program of China (Grant No. 2007AA022005), the National Basic Research Program of China (Grant No. 2007CB936603), and the National Natural Science Foundation of China (Grant Nos. 60604022 and 10635070).


  1. 1.
    Jain GH, Patil LA, Wagh MS, Patil DR, Patil SA, Amalnerkar DP (2006) Sens Actuators B 117:159CrossRefGoogle Scholar
  2. 2.
    Gaidi M, Chenevier B, Labeau M (2000) Sens Actuators B 62:43CrossRefGoogle Scholar
  3. 3.
    Jiang XY, Li HJ, Zheng XM (2008) J Mater Sci 43:6505. doi: CrossRefGoogle Scholar
  4. 4.
    Tamaki J, Maekawa T, Miura N, Yamazoe N (1992) Sens Actuators B 9:197CrossRefGoogle Scholar
  5. 5.
    Khanna A, Kumar R, Bhatti SS (2003) Appl Phys Letter 82:4388CrossRefGoogle Scholar
  6. 6.
    Kumar R, Khanna A, Tripathi P, Nandedkar RV, Potdar SR, Chaudhari SM, Bhatti SS (2003) J Phys D: Appl Phys 36:2377CrossRefGoogle Scholar
  7. 7.
    Ghimbeu CM, Lumbreras M, Siadat M, Landschoot RC, Schoonman J (2008) Sens Actuators B. doi: CrossRefGoogle Scholar
  8. 8.
    Niranjan RS, Patil KR, Sainkar SR, Mulla IS (2003) Mater Chem Phys 80:250CrossRefGoogle Scholar
  9. 9.
    Wu Y, Tong MS, He XL, Zhang YS, Dai GR (2001) Sens Actuators B 79:187CrossRefGoogle Scholar
  10. 10.
    Patil LA, Patil DR (2006) Sens Actuators B 120:316CrossRefGoogle Scholar
  11. 11.
    Kong XH, Li YD (2005) Sens Actuators B 105:449CrossRefGoogle Scholar
  12. 12.
    Xue XY, Xing LL, Chen YJ, Shi SL, Wang YG, Wang TH (2008) J Phys Chem C 112:12157CrossRefGoogle Scholar
  13. 13.
    North Carolina Department of Environment and Natural Resources. Accessed 2003
  14. 14.
    Cha JN, Birkedal H, Euliss LE, Bart MH, Wong MS (2003) J Am Chem Soc 125:8285CrossRefGoogle Scholar
  15. 15.
    Yu XL, Wang Y, Chan HLW, Cao CB (2009) Microporous Mesoporous Mater 118:423CrossRefGoogle Scholar
  16. 16.
    Wang CH, Chu XF, Wu MM (2007) Sens Actuators B 120:508CrossRefGoogle Scholar
  17. 17.
    Li XL, Lou TJ, Sun XM, Li YD (2004) Inorg Chem 43:5442CrossRefGoogle Scholar
  18. 18.
    Hyodo T, Sasahara K, Shimizu Y, Egashira M (2005) Sens Actuators B 106:580CrossRefGoogle Scholar
  19. 19.
    Sun XM, Li YD (2004) Angew Chem Int Ed 43:597CrossRefGoogle Scholar
  20. 20.
    Guo Z, Li MQ, Liu JH (2008) Nanotechnology 19:245611CrossRefGoogle Scholar
  21. 21.
    Lee JM, Moon BU, Shim CH, Kim BC, Lee MB, Lee DD, Lee JH (2005) Sens Actuators B 108:84CrossRefGoogle Scholar
  22. 22.
    Devi GS, Manorama S, Rao VJ (1995) Sens Actuators B 28:31CrossRefGoogle Scholar
  23. 23.
    Chowdhuri A, Sharma P, Gupta V, Sreenivas K, Rao KV (2002) J Appl Phys 92:2172CrossRefGoogle Scholar
  24. 24.
    Zhou XH, Cao QX, Huang H, Yang P, Hu Y (2003) Mater Sci Eng B 99:44CrossRefGoogle Scholar
  25. 25.
    Manorama S, Devi GS, Rao V (1994) J Appl Phys Lett 64:3163CrossRefGoogle Scholar
  26. 26.
    Chowdhuri A, Gupta V, Sreenivas K, Kumar R, Mozumdar S, Patanjali PK (2004) Appl Phys Lett 84:1180CrossRefGoogle Scholar
  27. 27.
    Tiemann M (2007) Chem Eur J 13:8376CrossRefGoogle Scholar
  28. 28.
    Liu YL, Yang HF, Yang Y, Liu ZM, Shen GL, Yu RQ (2006) Thin Solid Films 497:355CrossRefGoogle Scholar
  29. 29.
    Liu JY, Guo Z, Meng FL, Jia Y, Liu JH (2008) J Phys Chem C 112:6119CrossRefGoogle Scholar
  30. 30.
    Chang QF, Zhao K, Chen X, Li MQ, Liu JH (2008) J Mater Sci 43:5861. doi: CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Lifang He
    • 1
    • 2
  • Yong Jia
    • 1
    • 3
  • Fanli Meng
    • 1
    • 2
  • Minqiang Li
    • 1
  • Jinhuai Liu
    • 1
    • 2
    Email author
  1. 1.Key Laboratory of Biomimetic Sensing and Advanced Robot Technology, Hefei Institute of Intelligent MachinesChinese Academy of SciencesHefeiPeople’s Republic of China
  2. 2.Department of ChemistryUniversity of Science and Technology of ChinaHefeiPeople’s Republic of China
  3. 3.Department of PharmacyAnhui University of Traditional Chinese MedicineHefeiPeople’s Republic of China

Personalised recommendations