Journal of Materials Science

, Volume 44, Issue 16, pp 4321–4325 | Cite as

Ferroelectric properties of (1 − x)Bi(Zn1/2Ti1/2)O3xPbZrO3 ceramics

  • O. Khamman
  • X. TanEmail author
  • S. Ananta
  • R. Yimnirun


The (1 − x)Bi(Zn1/2Ti1/2)O3xPbZrO3 solid solution ceramics were prepared by using solid-state reaction method, and their ferroelectric properties were investigated. It was found that the perovskite structure is stable for compositions with x ≥ 0.900. Within this composition range, the crystal structure of the solid solution preserves the orthorhombic symmetry of PbZrO3 (PZ). The Curie point of the ceramics was found to decrease with increasing Bi(Zn1/2Ti1/2)O3 (BZT) content. The intermediate ferroelectric phase of PZ was stabilized by BZT addition and exists within a much wider temperature range in the solid solution.


Intermediate Phase Curie Point Morphotropic Phase Boundary Paraelectric Phase Remanent Polarization 



This study was supported by the National Science Foundation through the CAREER Grant DMR-0346819 and the Thailand Research Fund (TRF), the Commission on Higher Education (CHE), and the Faculty of Science, Chiang Mai University, Thailand.


  1. 1.
    Suchomel MR, Fogg AM, Allix M, Niu H, Claridge JB, Rosseinsky MJ (2006) Chem Mater 18:4987CrossRefGoogle Scholar
  2. 2.
    Suchomel MR, Davies PK (2005) Appl Phys Lett 86:262905CrossRefGoogle Scholar
  3. 3.
    Grinberg I, Suchomel MR, Dmowski W, Wojtek SE, Wu H, Davies PK, Rappe AM (2007) Phys Rev Lett 98:107601CrossRefGoogle Scholar
  4. 4.
    Zhang XD, Kwon D, Kim BG (2008) Appl Phys Lett 92:082906CrossRefGoogle Scholar
  5. 5.
    Kwon D, Kim B, Tong P, Kim BG (2008) Appl Phys Lett 93:042902CrossRefGoogle Scholar
  6. 6.
    Huang CC, Cann DP, Tan X, Vittayakorn N (2007) J Appl Phys 102:044103CrossRefGoogle Scholar
  7. 7.
    Huang CC, Cann DP (2008) J Appl Phys 104:024117CrossRefGoogle Scholar
  8. 8.
    Sawaguchi E, Maniwa H, Hoshino S (1951) Phys Rev 83:1078CrossRefGoogle Scholar
  9. 9.
    Viehland D (1995) Phys Rev B 52:778CrossRefGoogle Scholar
  10. 10.
    Corker DL, Glazer AM, Dec J, Roleder K, Whatmore RW (1997) Acta Crystallogr B53:135CrossRefGoogle Scholar
  11. 11.
    Teslic S, Egami T (1998) Acta Crystallogr B54:750CrossRefGoogle Scholar
  12. 12.
    Xu Z, Dai X, Viehland D, Payne DA (1995) J Am Ceram Soc 78:2220CrossRefGoogle Scholar
  13. 13.
    Tanaka M, Saito R, Tsuzuki K (1982) Jpn J Appl Phys 21:291CrossRefGoogle Scholar
  14. 14.
    Wirunchit S, Vittayakorn N (2008) J Appl Phys 104:024103CrossRefGoogle Scholar
  15. 15.
    Qu W, Tan X, Vittayakorn N, Wirunchit S, Besser MF (2009) J Appl Phys 105:014106CrossRefGoogle Scholar
  16. 16.
    Shannon RD (1976) Acta Crystallogr A32:751CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Physics, Faculty of ScienceChiang Mai UniversityChiang MaiThailand
  2. 2.Department of Materials Science and EngineeringIowa State UniversityAmesUSA

Personalised recommendations