Skip to main content
Log in

Transformation of microporous titanium glycolate nanorods into mesoporous anatase titania nanorods by hot water treatment

  • Mesostructured Materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

High surface area titanium glycolate microporous multi-faceted nanorods were synthesized from the reaction of titanium alkoxides (Ti(OEt)4, Ti(OiPr)4, or Ti(OnBu)4) with ethylene glycol, using a sol–gel reflux method. The specific surface area of the as-synthesized titanium glycolate nanorods obtained from Ti(OEt)4 is ~480 m2/g. A hot water treatment at 90 °C for 1 h transformed the titanium glycolate microporous nanorods into mesoporous anatase TiO2 nanorods. The shape of the nanorods was conserved after hot water treatment and the microporous to mesoporous transformation took place without significant change in the surface area (477 m2/g). Micro Raman spectroscopy, scanning electron microscopy, transmission electron microscopy, X-ray diffraction, solid state NMR, and nitrogen adsorption/desorption were used to characterize the samples. As a demonstration of potential applications, the thus formed mesoporous anatase TiO2 nanorods were tested for their photocatalytic efficiency in the degradation of crystal violet, and a photodegradation mechanism is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Fig. 9
Fig. 10
Scheme 5

Similar content being viewed by others

References

  1. O’Regan B, Gratzel M (1991) Nature 353:737

    Article  Google Scholar 

  2. Zhang H, Li GR, An LP, Yan TY, Gao XP, Zhu HY (2007) J Phys Chem 111:6143

    CAS  Google Scholar 

  3. Djaoued Y, Thibodeau M, Robichaud J, Balaji S, Priya S, Tchoukanova N, Bates SS (2008) J Photochem Photobiol A Chem 193:271

    Article  CAS  Google Scholar 

  4. Balaji S, Albert A-S, Djaoued Y, Brüning R (2009) J Raman Spectrosc 40:92

    Article  CAS  Google Scholar 

  5. Quan X, Ruan X, Zhao H, Chen S, Zhao Y (2007) Environ Pollut 147:409

    Article  CAS  Google Scholar 

  6. Li J, Ma W, Chen C, Zhao J, Zhu H, Gao X (2007) J Mol Catal A Chem 261:131

    Article  CAS  Google Scholar 

  7. Zhu H, Gao X, Lan Y, Song D, Xi Y, Zhao J (2004) J Am Chem Soc 126:8381

    Google Scholar 

  8. Wang D, Yu R, Kumuda N, Kinomura N (1999) Chem Mater 11:2008

    Article  CAS  Google Scholar 

  9. Wang D, Yu R, Chen Y, Kumuda N, Kinomura N, Takano M (2004) Solid State Ion 172:101

    Article  CAS  Google Scholar 

  10. Jiang X, Wang Y, Herricks T, Xia Y (2004) J Mater Chem 14:695

    Article  CAS  Google Scholar 

  11. Yu HK, Eun TH, Yi G-R, Yang S-M (2007) J Colloid Interface Sci 316:175

    Article  CAS  Google Scholar 

  12. Yu JG, Yu JC, Leung MKP, Ho WK, Cheng B, Zhao XJ, Zhao JC (2003) J Catal 217:69

    CAS  Google Scholar 

  13. Bavykin DV, Lapkin AA, Plucinski PK, Friedrich JM, Walsh FC (2005) J Catal 235:10

    Article  CAS  Google Scholar 

  14. Yu JC, Yu JG, Zhao JC (2002) Appl Catal B 36:31

    Article  CAS  Google Scholar 

  15. Herrmann JM (1999) Catal Today 53:115

    Article  CAS  Google Scholar 

  16. Cullity BD (1959) Elements of X-ray diffraction. Addison-Wesley Publishing, Reading, MA

    Google Scholar 

  17. Balaji S, Djaoued Y, Robichaud J (2006) J Raman Spectrosc 24:247

    Google Scholar 

  18. Djaoued Y, Badilescu S, Ashrit PV, Bersani D, Lottici PP, Brüning R (2002) J Sol-Gel Sci Technol 24:254

    Google Scholar 

  19. Ohsaka T, Izumi F, Fujiki Y (1978) J Raman Spectrosc 7:321

    Article  Google Scholar 

  20. Scott RWJ, Coombs N, Ozin GA (2003) J Mater Chem 13:969

    Article  CAS  Google Scholar 

  21. Barroso-Bujans F, Martinez R, Ortiz P (2003) J Appl Polym Sci 88:302

    Article  CAS  Google Scholar 

  22. Zhang D, Qi L (2005) Chem Commun 2735

  23. Chae W-S, Lee S-W, Kim Y-R (2005) Chem Mater 17:3072

    Article  CAS  Google Scholar 

  24. Yu H, Yu J, Cheng B, Lin J (2007) J Hazard Mater 147:581

    Article  CAS  Google Scholar 

  25. Wang D, Yu R, Kumada N, Kinomura N (1999) Chem Mater 11:220

    Google Scholar 

  26. Gröhn F, Bauer BJ, Kim G, Amis E (2001) J Polym Mater Sci Eng 84:78

    Google Scholar 

  27. Chen C-C, Fan H-J, Yang C-Y, Jan J-L, Lin H-D, Lu C-S (2006) J Photochem Photobiol A Chem 184:147

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support of the Research Assistantships Initiative of New Brunswick Innovation Fund (NBIF), the Atlantic Innovation Fund (AIF–Round II), and National Science and Engineering Research Council (NSERC) of Canada is gratefully acknowledged. We thank Dr. Louise Weaver (Microscopy Microanalysis Facility, University of New Brunswick, Fredericton, NB, Canada) for the TEM measurements, and Zoulika Hadj—Sadok (Laboratoire de Chimie des matériaux inorganiques—FUNDP, Namur, Belgique) for BET and XRD measurements. We are also thankful to Dr. Ulrike Werner-Zwanziger, Senior NMR Spectroscopist (Atlantic Magnetic Resonance Center, Department of chemistry, Dalhousie University, Halifax) for the NMR spectra.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yahia Djaoued.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Priya, S., Robichaud, J., Méthot, MC. et al. Transformation of microporous titanium glycolate nanorods into mesoporous anatase titania nanorods by hot water treatment. J Mater Sci 44, 6470–6483 (2009). https://doi.org/10.1007/s10853-009-3630-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-3630-5

Keywords

Navigation