Journal of Materials Science

, 44:6553 | Cite as

Synthesis of ordered mesoporous Pd/carbon catalyst with bimodal pores and its application in water-mediated Ullmann coupling reaction of chlorobenzene

Mesostructured Materials


Heterogeneous palladium catalysts have been supported on the ordered mesoporous carbons (Pd/OMC) with bimodal pores which are prepared by the surfactant-templating approach. Characterization using XRD, TEM, XPS, H2 chemisorption, and N2 sorption techniques reveals that the Pd/OMC catalysts have the ordered 2-D hexagonal mesostructure (space group of p6mm), extremely high surface areas (~1800 m2/g), large pore volumes (~1.64 cm3/g), bimodal pores (6.3 nm of primary mesopores and 1.7 nm of secondary mesopores inside the pore walls), hydrophobic carbon surface, and small metal particles well-dispersed inside the secondary small mesopores. This catalyst exhibits a high yield of 43% for biphenyl from the Ullmann coupling reaction of chlorobenzene in water at 100 °C without assistance of any phase transfer catalyst and can be reused up to 10 times, providing potential opportunities for industrial applications such as coupling and hydrogenation reactions.


Chlorobenzene Pore Wall Triblock Copolymer Mesoporous Carbon Phase Transfer Catalyst 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by NSF of China (20873086 and 20821140537), Shanghai Sci. & Tech. and Edu. Committee (07QH14011, 07SG49, S30406, 0852nm0090 and 08JC1417100), and the program for New Century Excellent Talents in Universities (NCET-07-0560).


  1. 1.
    Balachari D, Quinn L, O’Doherty GA (1999) Tetrahedron Lett 40:4769CrossRefGoogle Scholar
  2. 2.
    Kohler K, Heidenreich RG, Krauter JGE, Pietsch M (2002) Chem Eur J 8:622CrossRefGoogle Scholar
  3. 3.
    Yin LX, Liebscher J (2007) Chem Rev 107:133CrossRefPubMedGoogle Scholar
  4. 4.
    Kyotani T (2000) Carbon 38:269CrossRefGoogle Scholar
  5. 5.
    Lee J, Kim J, Hyeon T (2006) Adv Mater 18:2073CrossRefGoogle Scholar
  6. 6.
    Yang H, Zhao DY (2005) J Mater Chem 15:1217Google Scholar
  7. 7.
    Tiemann M (2008) Chem Mater 20:961CrossRefGoogle Scholar
  8. 8.
    Ryoo R, Joo SH, Kruk M, Jaroniec M (2001) Adv Mater 13:677CrossRefGoogle Scholar
  9. 9.
    Wan Y, Yang HF, Zhao DY (2006) Acc Chem Res 39:423CrossRefPubMedGoogle Scholar
  10. 10.
    Lu AH, Schuth F (2006) Adv Mater 18:1793CrossRefGoogle Scholar
  11. 11.
    Liang CD, Hong KL, Guiochon GA, Mays JW, Dai S (2004) Angew Chem Int Ed 43:5785CrossRefGoogle Scholar
  12. 12.
    Tanaka S, Nishiyama N, Egashira Y, Ueyama K (2005) Chem Commun 212:5Google Scholar
  13. 13.
    Meng Y, Gu D, Zhang FQ, Shi YF, Yang HF, Li Z, Yu CZ, Tu B, Zhao DY (2005) Angew Chem Int Ed 44:7053CrossRefGoogle Scholar
  14. 14.
    Wan Y, Qian XF, Jia NQ, Wang ZY, Li HX, Zhao DY (2008) Chem Mater 20:1012CrossRefGoogle Scholar
  15. 15.
    Wan Y, Shi YF, Zhao DY (2008) Chem Mater 20:932CrossRefGoogle Scholar
  16. 16.
    Hassan J, Sevignon M, Gozzi C, Schulz E, Lemaire M (2002) Chem Rev 102:1359CrossRefPubMedGoogle Scholar
  17. 17.
    Venkatraman S, Li CJ (1999) Org Lett 1:1133CrossRefGoogle Scholar
  18. 18.
    Mukhopadhyay S, Rothenberg G, Gitis D, Sasson Y (2000) Org Lett 2:211CrossRefPubMedGoogle Scholar
  19. 19.
    Polshettiwar V, Molnar A (2007) Tetrahedron 63:6949CrossRefGoogle Scholar
  20. 20.
    Davies IW, Matty L, Hughes DL, Reider PJ (2001) J Am Chem Soc 123:10139CrossRefPubMedGoogle Scholar
  21. 21.
    Li CJ (2005) Chem Rev 105:3095CrossRefPubMedGoogle Scholar
  22. 22.
    Wu XF, Li XH, Zanotti-Gerosa A, Pettman A, Liu JK, Mills AJ, Xiao JL (2008) Chem Eur J 14:2209CrossRefGoogle Scholar
  23. 23.
    Wu XF, Liu JK, Li XH, Zanotti-Gerosa A, Hancock F, Vinci D, Ruan JW, Xiao JL (2006) Angew Chem Int Ed 45:6718CrossRefGoogle Scholar
  24. 24.
    Narayan S, Muldoon J, Finn MG, Fokin VV, Kolb HC, Sharpless KB (2005) Angew Chem Int Ed 44:3275CrossRefGoogle Scholar
  25. 25.
    Baleizao C, Corma A, Garcia H, Leyva A (2004) J Org Chem 69:439CrossRefPubMedGoogle Scholar
  26. 26.
    Corma A, Das D, Garcia H, Leyva A (2005) J Catal 229:322CrossRefGoogle Scholar
  27. 27.
    Grushin VV, Alper H (1994) Chem Rev 94:1047CrossRefGoogle Scholar
  28. 28.
    Hassan J, Hathroubi C, Gozzi C, Lemaire M (2001) Tetrahedron 57:7845CrossRefGoogle Scholar
  29. 29.
    Liu RL, Shi YF, Wan Y, Meng Y, Zhang FQ, Gu D, Chen ZX, Tu B, Zhao DY (2006) J Am Chem Soc 128:11652CrossRefPubMedGoogle Scholar
  30. 30.
    Wang SY, Moon SH, Vannice MA (1981) J Catal 71:167CrossRefGoogle Scholar
  31. 31.
    Zhao DY, Huo QS, Feng JL, Stucky GD (1998) J Am Chem Soc 120:6024CrossRefGoogle Scholar
  32. 32.
    Meng Y, Gu D, Zhang FQ, Shi YF, Cheng L, Feng D, Wu ZX, Chen ZX, Wan Y, Stein A, Zhao DY (2006) Chem Mater 18:4447CrossRefGoogle Scholar
  33. 33.
    Thomas AC (1975) In: Photoelectron and auger spectroscopy, 1st edn. Plenum, New YorkGoogle Scholar
  34. 34.
    Wu YY, Livneh T, Zhang YX, Cheng GS, Wang JF, Tang J, Moskovits M, Stucky GD (2004) Nano Lett 4:2337CrossRefADSGoogle Scholar
  35. 35.
    Wan Y, Wang HY, Zhao QF, Klingstedt M, Terasaki O, Zhao DY (2009) J Am Chem Soc 131:4541CrossRefPubMedGoogle Scholar
  36. 36.
    Zhuang X, Wan Y, Feng CM, Shen Y, Zhao DY (2009) Chem Mater 21:706CrossRefGoogle Scholar
  37. 37.
    Wan Y, Zhang DQ, Zhai YP, Feng CM, Chen J, Li HX (2007) Chem Asian J 2:875CrossRefPubMedGoogle Scholar
  38. 38.
    Wan Y, Chen J, Zhang DQ, Li HX (2006) J Mol Catal A: Chem 258:89CrossRefGoogle Scholar
  39. 39.
    Gomez-Quero S, Cardenas-Lizana F, Keane MA (2008) Ind Eng Chem Res 47:6841CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of ChemistryShanghai Normal UniversityShanghaiPeople’s Republic of China

Personalised recommendations