Advertisement

Journal of Materials Science

, 44:6701 | Cite as

Pt nanoparticles inside the mesopores of TiO2–MCM-48: synthesis, characterization and catalytic activity for CO oxidation

  • Vaishali V. Narkhede
  • Andrea De Toni
  • Vijay S. Narkhede
  • Markus Reichinger
  • A. Birkner
  • J. W. (Hans) Niemantsverdriet
  • Wolfgang Grünert
  • Hermann Gies
Mesostructured Materials

Abstract

TiO2 and Pt nanoparticles were deposited in the channels of siliceous MCM-48 via a sequential incipient wetness-impregnation method employing (NH4)2PtCl4 as platinum source. The resulting composite Pt/TiO2–MCM-48 (1 wt% Pt, ca. 3 wt% Ti) was characterized using XRD, TEM, nitrogen physisorption, hydrogen chemisorption, UV–vis spectroscopy, and XPS; its catalytic activity for CO oxidation was also explored. These data were compared with those of Pt/MCM-48 prepared via an analogous route. The results reveal that the platinum was deposited inside the intact pore system in both cases. It remains inside upon mild reduction but tends to segregate out of the pore system at higher reduction temperatures or during CO oxidation. Both composites were found to be highly active in CO oxidation, with 50% conversion at 460–475 K after activation of the unreduced catalysts in the (net oxidizing) feed. Striking differences in this activation process between Pt/MCM-48 and Pt/TiO2–MCM-48 suggest that the precursor reduction is influenced by an interaction with the TiO2 component in the latter.

Keywords

TiO2 Pore System Conversion Curve Precursor Decomposition Chemisorption Capacity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We acknowledge financial support provided by the Deutsche Forschungsgemeinschaft in the frame of the Sonderforschungsbereich ‘‘Metal-substrate interactions in heterogeneous catalysis’’, SFB 558 (Projects B3 and A3). The authors are grateful to Ms. S. Buse for her help during chemisorption measurements.

References

  1. 1.
    Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Higgins JL, Schlenker JL (1992) J Am Chem Soc 114:10834CrossRefGoogle Scholar
  2. 2.
    Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Nature 359:710CrossRefADSGoogle Scholar
  3. 3.
    Sayari A (1996) Chem Mater 8:1840CrossRefGoogle Scholar
  4. 4.
    Corma A (1997) Chem Rev 97:2373CrossRefPubMedGoogle Scholar
  5. 5.
    Hoppe R, Ortlam A, Rathousky J, Schulz-Ekloff G, Zukal A (1997) Microporous Mater 8:267CrossRefGoogle Scholar
  6. 6.
    Kinski I, Gies H, Marlow F (1997) Zeolites 19:375CrossRefGoogle Scholar
  7. 7.
    Schulz-Ekloff G, Wöhrle D, van Duffel B, Schoonheydt RA (2002) Microporous Mesoporous Mater 51:91CrossRefGoogle Scholar
  8. 8.
    On DT, Desplantier-Giscard D, Danumah C, Kaliaguine S (2001) Appl Catal A 222:299CrossRefGoogle Scholar
  9. 9.
    Gies H, Grabowski S, Bandyopadhyay M, Grünert W, Tkachenko OP, Klementiev KV, Birkner A (2003) Microporous Mesopor Mater 60:31CrossRefGoogle Scholar
  10. 10.
    van den Berg MWE, Polarz S, Tkachenko OP, Klementiev KV, Bandyopadhyay M, Khodeir L, Gies H, Muhler M, Grünert W (2006) J Catal 241:446CrossRefGoogle Scholar
  11. 11.
    Bandyopadhyay M, Birkner A, van den Berg MWE, Klementiev KV, Schmidt W, Grünert W, Gies H (2005) Chem Mater 17:3820CrossRefGoogle Scholar
  12. 12.
    Bandyopadhyay M, Korsak O, van den Berg MWE, Grünert W, Birkner A, Li W, Schüth F, Gies H (2006) Microporous Mesopor Mater 89:158CrossRefGoogle Scholar
  13. 13.
    Narkhede VS, Toni AD, Narkhede VV, Guraya M, Niemantsverdriet JW, van den Berg MWE, Grünert W, Gies H (2009) Microporous Mesopor Mater 118:52CrossRefGoogle Scholar
  14. 14.
    Tauster SJ, Fung SC, Garten RL (1978) J Am Chem Soc 100:170CrossRefGoogle Scholar
  15. 15.
    Chatterjee M, Iwasaki T, Onadera Y, Nagase T (1999) Catal Lett 61:199CrossRefGoogle Scholar
  16. 16.
    Jang JH, Lee SC, Kim DJ, Kang M, Choung SJ (2005) Appl Catal A 286:36CrossRefGoogle Scholar
  17. 17.
    Kormann C, Bahnemann DW, Hoffmann MR (1988) J Phys Chem 92:5196CrossRefGoogle Scholar
  18. 18.
    Moulder LF, Stickle WF, Sobol PE, Bomben KD (1992) Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer Cooperation, USAGoogle Scholar
  19. 19.
    Katrib A, El-Egaby MS (1979) Inorg Chim Acta 36:L405CrossRefGoogle Scholar
  20. 20.
    Elmasides C, Kontarides DI, Grünert W, Verykios XE (1999) J Phys Chem B 103:5227CrossRefGoogle Scholar
  21. 21.
    Uchijima T (1996) Catal Today 28:105CrossRefGoogle Scholar
  22. 22.
    Grünert W, Brückner A, Hofmeister H, Claus P (2004) J Phys Chem B 108:5709CrossRefGoogle Scholar
  23. 23.
    Slinko MM, Jäger NI (1994) Stud Surf Sci Catal 86:1CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Vaishali V. Narkhede
    • 1
  • Andrea De Toni
    • 2
  • Vijay S. Narkhede
    • 3
  • Markus Reichinger
    • 1
  • A. Birkner
    • 4
  • J. W. (Hans) Niemantsverdriet
    • 3
  • Wolfgang Grünert
    • 2
  • Hermann Gies
    • 1
  1. 1.Chair of Crystallography, Institute of Geology, Mineralogy and GeophysicsRuhr-University BochumBochumGermany
  2. 2.Laboratory of Industrial Chemistry, Faculty of Chemistry and BiochemistryRuhr-University BochumBochumGermany
  3. 3.Schuit Institute of CatalysisEindhoven University of TechnologyEindhovenThe Netherlands
  4. 4.Laboratory of Physical Chemistry I, Faculty of Chemistry and BiochemistryRuhr-University BochumBochumGermany

Personalised recommendations