Journal of Materials Science

, Volume 44, Issue 16, pp 4241–4245 | Cite as

Influence of annealing on rheological and conductive behaviors of high-density polyethylene/carbon black composites

  • Qing Cao
  • Yihu Song
  • Zhihua Liu
  • Qiang ZhengEmail author


A simultaneous measurement on dynamic viscoelastic and conductive behaviors was carried out to investigate the effect of high temperature annealing on the properties of carbon black (CB) filled high-density polyethylene composites. The results showed that dynamic storage and loss moduli of the composites increased significantly with increasing annealing time, and there existed a liquid- to solid-like transition at a critical time (tc) which is dependent on temperature and CB content. Accompanying with the variation in dynamic moduli, electrical resistance (R) decreased sharply with time. What’s more, the increase of R could be observed in the long time region. The activation energy determined from tc as a function of reciprocal temperature was found to be irrespective of CB content. The evolutions of moduli and R induced by thermal treatment were discussed on the base of the concept of filler flocculation in the melt.


Carbon Black Flocculation HDPE Carbon Black Particle Carbon Black Content 



This work was supported by the National Nature Science Foundation of China (No. 20774085).


  1. 1.
    Oono R (1977) J Appl Polym Sci 21:1743CrossRefGoogle Scholar
  2. 2.
    Cembrola RJ (1982) Polym Eng Sci 22:601CrossRefGoogle Scholar
  3. 3.
    Hess WM, Swor RA, Micek EJ (1984) Rubber Chem Technol 57:959CrossRefGoogle Scholar
  4. 4.
    Amin M, Nasr GM, Sobhy MS (1991) J Mater Sci 26:4615. doi: CrossRefGoogle Scholar
  5. 5.
    Schwarz MK, Bauhofer W, Schulte K (2002) Polymer 43:3079CrossRefGoogle Scholar
  6. 6.
    Thongruang W, Spontak RJ, Balik CM (2002) Polymer 43:2279CrossRefGoogle Scholar
  7. 7.
    Cannon LA, Pethrick RA (2002) Polymer 43:6429CrossRefGoogle Scholar
  8. 8.
    Ohe K, Natio Y (1971) Jpn J Appl Phys 10:99CrossRefGoogle Scholar
  9. 9.
    Bohm GGA, Nguyen MN (1995) J Appl Polym Sci 55:1041CrossRefGoogle Scholar
  10. 10.
    Hou YH, Zhang MQ, Rong MZ, Yu G, Zeng HM (2002) J Appl Polym Sci 84:2768CrossRefGoogle Scholar
  11. 11.
    Hou YH, Zhang MQ, Mai KC, Rong MZ, Yu G, Zeng HM (2001) J Appl Polym Sci 80:1267CrossRefGoogle Scholar
  12. 12.
    Wu GZ, Asai S, Sumita M (1999) Macromolecules 32:3534CrossRefGoogle Scholar
  13. 13.
    Meyer J (1974) Polym Eng Sci 14:706CrossRefGoogle Scholar
  14. 14.
    Zhang MY, Jia WT, Chen XF (1996) J Appl Polym Sci 62:743CrossRefGoogle Scholar
  15. 15.
    Luo YL, Wang GC, Fang B, Zhang BY, Zhang ZP (1996) J Funct Polym 9:329Google Scholar
  16. 16.
    Luo YL, Wang GC, Fang B, Zhang BY, Zhang ZP (1998) Eur Polym J 34:1221CrossRefGoogle Scholar
  17. 17.
    Park JS, Kang PH, Nho YC, Suh DH (2003) J Appl Polym Sci 89:2316CrossRefGoogle Scholar
  18. 18.
    Song YH, Zheng Q (2006) J Appl Polym Sci 105:710CrossRefGoogle Scholar
  19. 19.
    Wu GZ, Asai S, Sumita M (2002) Macromolecules 35:1708CrossRefGoogle Scholar
  20. 20.
    Wu GZ, Asai S, Zhang C, Miura T, Sumita M (2000) J Appl Phys 88:1480CrossRefGoogle Scholar
  21. 21.
    Bar-Chaput S, Carrot C (2006) Rheologica Acta 45:339CrossRefGoogle Scholar
  22. 22.
    Konishi Y, Cakmak A (2006) Polymer 47:5371CrossRefGoogle Scholar
  23. 23.
    Zheng Q, Song YH, Wu G, Song XB (2003) J Polym Sci 41:983CrossRefGoogle Scholar
  24. 24.
    Wu G, Lin J, Zheng Q, Zhang MQ (2006) Polymer 47:2442CrossRefGoogle Scholar
  25. 25.
    Wu G, Zheng Q (2004) J Polym Sci 42:1199CrossRefGoogle Scholar
  26. 26.
    Wu GZ, Asai S (2000) Colloid Polym Sci 278:220CrossRefGoogle Scholar
  27. 27.
    Kotsikova R, Nesheva D, Krusteva E, Stavrev S (2004) J Appl Polym Sci 92:2220CrossRefGoogle Scholar
  28. 28.
    Payne AR (1965) J Appl Polym Sci 9:801CrossRefGoogle Scholar
  29. 29.
    Voet A, Cook FR (1968) Rubber Chem Technol 41:1207CrossRefGoogle Scholar
  30. 30.
    Liu ZH, Song YH, Zhou JF, Zheng Q (2007) J Mater Sci 42:8757. doi: CrossRefGoogle Scholar
  31. 31.
    Liu ZH, Song YH, Shangguan YG, Zheng Q (2007) J Mater Sci 42:2903. doi: CrossRefGoogle Scholar
  32. 32.
    Liu ZH, Song YH, Shangguan YG, Zheng Q (2008) J Mater Sci 43:4828. doi: CrossRefGoogle Scholar
  33. 33.
    Narkis M, Tobolsky AV (1969) J Appl Polym Sci 13:2257CrossRefGoogle Scholar
  34. 34.
    Narkis M, Ram A, Stein Z (1981) Polym Eng Sci 21:1049CrossRefGoogle Scholar
  35. 35.
    Wu G, Zheng Q, Jiang L, Song YH (2004) Chem J Chin Univ 25:357Google Scholar
  36. 36.
    Wu G, Song YH, Zheng Q, Du M, Zhang PJ (2003) J Appl Polym Sci 88:2160CrossRefGoogle Scholar
  37. 37.
    Cassagnau P, Melis F (2003) Polymer 44:6607CrossRefGoogle Scholar
  38. 38.
    Aranguren MI, Mora E, DeGroot JV Jr, Macosko CW (1992) J Rheol 36:1165CrossRefGoogle Scholar
  39. 39.
    Litvinov VM, Steeman PAM (1999) Macromolecules 32:8476CrossRefGoogle Scholar
  40. 40.
    Niedermeier W, Frohlich J (2003) Kautschuk Gummi Kunststoffe 56:519Google Scholar
  41. 41.
    Alig I, Skipa T, Lellinger D, Pötschke P (2008) Polymer 49:3524CrossRefGoogle Scholar
  42. 42.
    Alig I, Pötschke P, Pegel S, Dudkin SM, Lellinger D (2007) Gummi Fasern Kunstst 60:280Google Scholar
  43. 43.
    Alig I, Skipa T, Engel M, Lellinger D, Pegel S, Pötschke P (2007) Phys Status Solidi B 244:4223CrossRefGoogle Scholar
  44. 44.
    Alig I, Skipa T, Lellinger D, Bierdel M, Meyer H (2008) Phys Status Solidi B 245:2264CrossRefGoogle Scholar
  45. 45.
    Heinrich G, Costa FR, Abdel-Goad M, Wagenknecht U, Lauke B, Härtel V (2005) Kautsch Gummi Kunstst 58:163Google Scholar
  46. 46.
    Alig I, Lellinger D, Engel M, Skipa T, Pötschke P (2008) Polymer 49:1902CrossRefGoogle Scholar
  47. 47.
    Zhang C, Wang P, Ma CA, Wu GZ, Sumita M (2006) Polymer 47:466CrossRefGoogle Scholar
  48. 48.
    Katada A, Konishi Y, Isogai T, Tominaga Y, Asai S, Sumita M (2003) J Appl Polym Sci 89:1151CrossRefGoogle Scholar
  49. 49.
    Traina M, Pegoretti A, Penati A (2007) J Appl Polym Sci 106:2065CrossRefGoogle Scholar
  50. 50.
    Yi XS (2004) Function principle of filled conductive polymer composites. National Defense Industry Press, BeijingGoogle Scholar
  51. 51.
    Meier JG, Klüppel M (2008) Macromol Mater Eng 293:12CrossRefGoogle Scholar
  52. 52.
    Pötschke P, Fornes TD, Paul DR (2002) Polymer 43:3247CrossRefGoogle Scholar
  53. 53.
    Winter HH, Mours M (1997) Adv Polym Sci 134:165CrossRefGoogle Scholar
  54. 54.
    Won YY, Meeker SP, Trappe V, Weitz DA, Diggs NZ, Emert JI (2005) Langmuir 21:924CrossRefGoogle Scholar
  55. 55.
    Jäger KM, McQueen Q (1999) Kautsch Gummi Kunsts 52:734Google Scholar
  56. 56.
    Jäger KM, Eggen SS (2004) Polymer 45:7681CrossRefGoogle Scholar
  57. 57.
    Leblanc JL, Jäger KM (2006) J Appl Polym Sci 101:4071CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Qing Cao
    • 1
    • 2
  • Yihu Song
    • 1
    • 2
  • Zhihua Liu
    • 1
    • 2
  • Qiang Zheng
    • 1
    • 2
    Email author
  1. 1.Department of Polymer Science and EngineeringZhejiang UniversityHangzhouChina
  2. 2.Key Laboratory of Macromolecular Synthesis and Functionalization of Ministry of EducationZhejiang UniversityHangzhouChina

Personalised recommendations