Journal of Materials Science

, 44:6525 | Cite as

Water intrusion-extrusion in silicalite-1 with tunable mesoporosity prepared in fluoride medium

  • M. Trzpit
  • M. Soulard
  • J. Patarin
Mesostructured Materials


Experimental water intrusion–extrusion isotherms were performed at room temperature on mesoporous silicalite-1 samples, prepared in fluoride medium and using carbon black or surfactant, [3-(trimethoxysilyl)propyl]hexadecyldimethylammonium chloride, as porogen and templating agents, respectively. The increase of the porous volume observed for the silicalite-1 sample prepared in the presence of carbon black leads to an increase of the water intruded volume at high pressure (100 MPa). Therefore, the amount of stored energy in this water–zeolite system is greater than for a conventional “water–silicalite-1” system. However, the fluoride route appears to be a less effective method than the alkaline route.


Zeolite Carbon Black Microporous Volume Water Intrusion Trimethoxysilyl 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the Agence Nationale de la Recherche under contract # BLANC06-3_144027 and the ACI program “Nanothermomécanique”.


  1. 1.
    Eroshenko V, Regis R-C, Soulard M, Patarin J (2001) J Am Chem Soc 123:8129CrossRefPubMedGoogle Scholar
  2. 2.
    Tao Y, Kanoh H, Abrams L, Kaneko K (2006) Chem Rev 106:896CrossRefPubMedGoogle Scholar
  3. 3.
    Egeblad K, Christensen CH, Kustova M, Christensen CH (2008) Chem Mater 20:946CrossRefGoogle Scholar
  4. 4.
    Trzpit M, Soulard M, Patarin J (2009) Microporous Mesoporous Mater 117:627CrossRefGoogle Scholar
  5. 5.
    Madsen C, Jacobsen CJH (1999) Chem Commun 673Google Scholar
  6. 6.
    Choi M, Cho HS, Srivastava R, Venkatesan C, Choi D-H, Ryoo R (2006) Nat Mater 5:718CrossRefADSPubMedGoogle Scholar
  7. 7.
    Chézeau JM, Delmotte L, Guth JL, Gabelica Z (1991) Zeolites 11:598CrossRefGoogle Scholar
  8. 8.
    Soulard M, Patarin J, Eroshenko V, Regis RC (2004) In: Van Steen E et al (eds) Proceedings of the 14th international zeolite conference, p 1830Google Scholar
  9. 9.
    Trzpit M, Soulard M, Patarin J, Desbiens N, Cailliez F, Boutin A, Demachy I, Fuchs AH (2007) Langmuir 23:10131CrossRefPubMedGoogle Scholar
  10. 10.
    Guth JL, Kessler H, Wey R (1986) In: Murakami Y et al (eds) Proceedings of the 10th international zeolite conference, p 121Google Scholar
  11. 11.
    Yu J, Liu S, Yu H (2007) J Catal 249:59CrossRefGoogle Scholar
  12. 12.
    Yu J, Liu S, Yu H (2008) Cryst Growth Des 8:930CrossRefMathSciNetGoogle Scholar
  13. 13.
    Shaojie L, Xiaohua S, Yuan L, Huafei L, Li J, Ling H (2006) Brevet CN1792158Google Scholar
  14. 14.
    Cundy CS, Cox PA (2003) Chem Rev 103:663CrossRefPubMedGoogle Scholar
  15. 15.
    Llewellyn PL, Coulomb J-P, Grillet Y, Patarin J, Andre G, Rouquerol J (1993) Langmuir 9:1852CrossRefGoogle Scholar
  16. 16.
    Desbiens N, Boutin A, Demachy I (2005) J Phys Chem B 109:24071CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Equipe Matériaux à Porosité Contrôlée (MPC), Institut de Science des Matériaux de Mulhouse (IS2M), LRC CNRS 7228Université de Haute-AlsaceMulhouse CedexFrance

Personalised recommendations