Journal of Materials Science

, Volume 44, Issue 16, pp 4211–4218 | Cite as

Applications of electron backscatter diffraction to materials science: status in 2009

  • Valerie RandleEmail author


Over the last two decades electron backscatter diffraction (EBSD) in the scanning electron microscope has become a powerful tool for the characterisation of crystalline materials. Via an in-depth analysis of published work in 2008 compared with 2003, this article captures the present contribution that EBSD is making to materials science. From the analysis it is shown that some aspects of EBSD application have increased greatly in recent years, particularly the range of materials analysed, microtexture determination, general microstructure characterisation, application to interfaces and combinations of EBSD with other applications such as modelling or materials testing. On the other hand some other applications of EBSD are still emerging, such as macrotexture determination, true phase identification and three-dimensional EBSD.


Energy Dispersive Spectroscopy Coincidence Site Lattice EBSD Data Boundary Plane Distribution Energy Dispersive Spectroscopy Detector 


  1. 1.
    Randle V (2003) Microtexture determination and its applications, 2nd edn. Institute of Materials, LondonGoogle Scholar
  2. 2.
    Engler O, Randle V (2009) Introduction to texture analysis: macrotexture, microtexture and orientation mapping, 2nd edn. Taylor and Francis, USA (in press)CrossRefGoogle Scholar
  3. 3.
    Schwartz AJ, Kumar M, Adams BL, Field D (eds) Electron backscatter diffraction in materials science, 2nd edn. Springer (in press)Google Scholar
  4. 4.
    Randle V (2008) Adv Imaging Electron Phys 151:363CrossRefGoogle Scholar
  5. 5.
    Humphreys FJ (2004) Scr Mater 51:771CrossRefGoogle Scholar
  6. 6.
    Zaafarani N, Raabe D, Singh RN, Roters F, Zaefferer S (2006) Acta Mater 54:1863CrossRefGoogle Scholar
  7. 7.
    Koblischka-Veneva A, Koblischka MR (2008) Mater Sci Eng B 151:65CrossRefGoogle Scholar
  8. 8.
    Lay S, Allibert CH, Christensen M, Wahnström G (2008) Mater Sci Eng A 486:253CrossRefGoogle Scholar
  9. 9.
    Ruppi S (2008) Surf Coat Technol 202:4257CrossRefGoogle Scholar
  10. 10.
    Kubota M, Cizek P, Rainforth WM (2008) Compos Sci Technol 68:888CrossRefGoogle Scholar
  11. 11.
    Charpentier M, Hazotte A, Daloz D (2008) Mater Sci Eng A 491:321CrossRefGoogle Scholar
  12. 12.
    Dan NH (2008) J Magn Magn Mater 320:429CrossRefGoogle Scholar
  13. 13.
    Binner J, Chang H, Higginson R (2008) J Eur Ceram Soc 29:837CrossRefGoogle Scholar
  14. 14.
    Scott TB, Petherbridge JR, Findlay I, Glascott J, Allen GC (2008) J Alloy Compd 475:766CrossRefGoogle Scholar
  15. 15.
    Deal A, Hooghan T, Eades A (2008) Ultramicroscopy 108:116CrossRefGoogle Scholar
  16. 16.
    Grosdidier T, Fundenberger J-J, Goran D, Bouzy E, Suwas S, Skrotzki W, Tóth LS (2008) Scr Mater 59:1087CrossRefGoogle Scholar
  17. 17.
    Fonda RW, Knipling KE, Bingert JF (2008) Scr Mater 58:343CrossRefGoogle Scholar
  18. 18.
    Lampke T, Dietrich D, Leopold A, Alisch G, Wielage B (2008) Surf Coat Technol 202:3967CrossRefGoogle Scholar
  19. 19.
    Hjelen J, Ørsund E, Hoel E, Runde P, Furu T, Nes E (1993) Textures Microstruct 20:29CrossRefGoogle Scholar
  20. 20.
    Mingard K, Roebuck B, Bennett E, Gee M, Nordenstrom H, Sweetman G, Chan P (2009) Int J Refract Metals Hard Mater 27:213CrossRefGoogle Scholar
  21. 21.
    Wright S, Nowell M. In: Rollett AD (ed) ICOTOM15. American Ceramic Society and TMS (on CD). ISBN 978-1-57498-296-1Google Scholar
  22. 22.
    Li H, Yin F, Sawaguchi T, Ogawa K, Zhao X, Tsuzaki K (2008) Mater Sci Eng A 494:217CrossRefGoogle Scholar
  23. 23.
    Ramírez-Rico J, de Arellano-López AR, Martínez-Fernández J, Peña JI, Larrea A (2008) J Eur Ceram Soc 14:2681CrossRefGoogle Scholar
  24. 24.
    Matykina E, Arrabal R, Skeldon P, Thompson GE, Habazaki H (2008) Thin Solid Films 516:2296CrossRefGoogle Scholar
  25. 25.
    Dingley DJ, Wright SI. In: Schwartz AJ, Kumar M, Adams BL, Field DP (eds) Electron backscatter diffraction in materials science, 2nd edn. Springer (in press)Google Scholar
  26. 26.
    Ronnie Teo JW, Ng FL, Kip Goi LS, Sun YF, Wang ZF, Shi XQ, Wei J, Li GY (2008) Microelectron Eng 85:512CrossRefGoogle Scholar
  27. 27.
    Laigo J, Christien F, Le Gall R, Tancret F, Furtado J (2008) Mater Charact 59:1580CrossRefGoogle Scholar
  28. 28.
    Jiang L, Jonas JJ, Boyle K, Martin P (2008) Mater Sci Eng A 492:68CrossRefGoogle Scholar
  29. 29.
    Ferrasse S, Segal VM, Alford F, Kardokus J, Strothers S (2008) Mater Sci Eng A 493:130CrossRefGoogle Scholar
  30. 30.
    Mannesson K, Elfwing M, Kusoffsky A, Norgren S, Ågren J (2008) Int J Refract Met Hard Mater 26:449CrossRefGoogle Scholar
  31. 31.
    Chang H, Baker I (2008) Mater Sci Eng A 476:46CrossRefGoogle Scholar
  32. 32.
    Paul H, Driver JH, Wajda W (2008) Mater Sci Eng A 477:282CrossRefGoogle Scholar
  33. 33.
    Eliash T, Kazakevich M, Semenov VN, Rabkin E (2008) Acta Mater 56:5640CrossRefGoogle Scholar
  34. 34.
    Wu G, Juul Jensen D (2008) Mater Charact 59:794CrossRefGoogle Scholar
  35. 35.
    Randle V, Owen GT (2006) Acta Mater 54:1777CrossRefGoogle Scholar
  36. 36.
    Vonlanthen P, Grobety B (2008) Ceram Int 34:1459CrossRefGoogle Scholar
  37. 37.
    Barnett MR, Keshavarz Z, Beer AG, Ma X (2008) Acta Mater 56:5CrossRefGoogle Scholar
  38. 38.
    Saylor DM, Adams BL, El-Dasher BS, Rohrer GS (2003) Metall Mater Trans A 34:1Google Scholar
  39. 39.
    Saylor DM, El-Dasher BS, Rollett AD, Rohrer GS (2004) Acta Mater 52:3649CrossRefGoogle Scholar
  40. 40.
    Saylor DM, Morawiec A, Rohrer GS (2003) Acta Mater 51:3675CrossRefGoogle Scholar
  41. 41.
    Randle V, Coleman M (2009) Acta Mater 57:3410Google Scholar
  42. 42.
    Koblischka-Veneva A, Koblischka MR (2008) Superlattices Microstruct 44:468CrossRefGoogle Scholar
  43. 43.
    Groeber M, Ghosh S, Uchic MD, Dimiduk DM (2008) Acta Mater 56:1257CrossRefGoogle Scholar
  44. 44.
    Zaafarani N, Raabe D, Roters F, Zaefferer S (2008) Acta Mater 56:31CrossRefGoogle Scholar
  45. 45.
    Gourgues-Lorenzon A-F (2007) Mater Rev 57:65CrossRefGoogle Scholar
  46. 46.
    Hartmann C, Wollweber J, Seitz C, Albrecht M, Fornari R (2008) J Cryst Growth 310:930CrossRefGoogle Scholar
  47. 47.
    Li X, Zhang J, Rong L, Li Y (2008) Mater Sci Eng A 488:547CrossRefGoogle Scholar
  48. 48.
    Nikolussi M, Leineweber A, Mittemeijer EJ (2008) Acta Mater 56:5837CrossRefGoogle Scholar
  49. 49.
    Nafisi S, Ghomashchi R, Vali H (2008) Mater Charact 59:1466CrossRefGoogle Scholar
  50. 50.
    Tan L, Ren X, Sridharan K, Allen TR (2008) Corros Sci 50:3056CrossRefGoogle Scholar
  51. 51.
    Kim HG, Choi BK, Jeong YH (2008) Nucl Eng Des 238:3331CrossRefGoogle Scholar
  52. 52.
    Cheng X, Petrov R, Zhao L, Janssen M (2008) Eng Fract Mech 75:739CrossRefGoogle Scholar
  53. 53.
    Hu XH, Jain M, Wilkinson DS, Mishra RK (2008) Acta Mater 56:3187CrossRefGoogle Scholar
  54. 54.
    Wilkinson AJ, Meaden G, Dingley DJ (2008) Superlattices Microstruct 45:285CrossRefGoogle Scholar
  55. 55.
    Zisman AA, Van Boxel S, Seefeldt M, Van Houtte P (2008) Mater Sci Eng A 474:165CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Materials Research Centre, School of EngineeringSwansea UniversitySwanseaUK

Personalised recommendations