Journal of Materials Science

, Volume 44, Issue 15, pp 3997–4002 | Cite as

Fabrication of mesoporous titania aerogel film via supercritical drying

  • Won Ju Sung
  • Sang-Hoon Hyun
  • Dong-Hyun Kim
  • Doo-Soo Kim
  • Jungho Ryu


Using a supercritical drying method, fluorine-doped tin oxide (FTO) glass was coated with a mesoporous titania aerogel film prepared from titania sols with viscosity between 10 and 60 cP that had been spin coated, immersed in IPA solution, and aged at least 3 weeks. Mesoporous titania aerogel film has an anatase structure, and an average porosity of 76%. It is hydrophilic, and its mechanical strength is improved by heat treatment at over 400 °C for 2 h. After heat treatment, the film retains its anatase structure and has a porosity of 68%. Dye-sensitized solar cells were fabricated using these mesoporous titania aerogel films. The thickness of the film was about 1 μm and the highest photo conversion efficiency, obtained when the film was heat treated at 450 °C for 2 h, was 3.71%.


TiO2 TiO2 Film Power Conversion Efficiency TiO2 Particle Anatase Structure 



This work was supported by the Korea Electric Power Research Institute.


  1. 1.
    Teichner S, Nicolaon G, Vicarini M, Gardes G (1976) Adv Colloid Interface Sci 5:245CrossRefGoogle Scholar
  2. 2.
    Schineider M, Baiker A (1997) Catal Today 35:339CrossRefGoogle Scholar
  3. 3.
    Sanchez C, Livage J, Henry M, Babonneau F (1988) J Non-Cryst Solids 100:65CrossRefADSGoogle Scholar
  4. 4.
    Dagan G, Tomkiewicz M (1993) J Phys Chem 97:12651CrossRefGoogle Scholar
  5. 5.
    Dagan G, Tomkiewicz M (1994) J Non-Cryst Solids 175:294CrossRefADSGoogle Scholar
  6. 6.
    O’Regan B, Grätzel M (1991) Nature 353:737CrossRefGoogle Scholar
  7. 7.
    Barbe C, Arendse F, Comte P, Jirousek M, Lenzmann F, Shklover V, Grätzel M (1997) J Am Ceram Soc 80:3157CrossRefGoogle Scholar
  8. 8.
    Ngamsinlapasathian S, Pavasupree S, Suzuki Y, Yoshikawa S (2006) Sol Energy Mater Sol Cells 90:3187CrossRefGoogle Scholar
  9. 9.
    Kim S, Yum J, Sung Y (2005) J Photochem Photobiol A Chem 171:269CrossRefGoogle Scholar
  10. 10.
    Ngamsinlapasathian S, Sakulkhaemaruethai S, Pavasupree S, Kitiyanan A, Sreethawong T, Suzuki Y, Yoshikawa S (2004) J Photochem Photobiol A Chem 164:145CrossRefGoogle Scholar
  11. 11.
    Pietron J, Rolison D (2004) J Non-Cryst Solids 350:107CrossRefADSGoogle Scholar
  12. 12.
    Pietron J, Stux A, Compton R, Rolison D (2007) Sol Energy Mater Sol Cells 91:1066CrossRefGoogle Scholar
  13. 13.
    Yoldas B (1980) Appl Opt 19:1425CrossRefADSPubMedGoogle Scholar
  14. 14.
    Kingery W, Bowen H, Uhlmann D (1976) Introduction to ceramics. Wiley, New YorkGoogle Scholar
  15. 15.
    Kubo W, Kitamura T, Hanabusa K, Wada Y, Yanagida S (2002) Chem Commun 4:374CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Won Ju Sung
    • 1
  • Sang-Hoon Hyun
    • 1
  • Dong-Hyun Kim
    • 2
  • Doo-Soo Kim
    • 2
  • Jungho Ryu
    • 2
  1. 1.School of Advanced Materials Science and Engineering, College of EngineeringYonsei UniversitySeoulRepublic of Korea
  2. 2.KEPRI, Korea Electric Power Research InstituteDaejeonRepublic of Korea

Personalised recommendations