Journal of Materials Science

, Volume 44, Issue 15, pp 3975–3982 | Cite as

Nanotubular oxide layer formation on Ti–13Nb–13Zr alloy as a function of applied potential

  • Viswanathan S. Saji
  • Han Cheol Choe
  • William A. Brantley


Nanotubular oxide layer formation on biomedical grade α + β type Ti–13Nb–13Zr alloy was investigated using anodization technique as a function of applied dc potential (10–40 V) and anodizing time (30–180 min) in 1 M H3PO4 + 0.5 wt% NaF at room temperature. The as-formed and crystallized nanotubes were characterized using SEM, XRD, and TEM. There was a bimodal size distribution of nanotubes with diameters at the range of 25–110 nm. Nanotubes nucleated on β matrix exhibited uniform surface appearance with circular morphology, whereas those nucleated on α phase yielded parabolic shape. TEM/EDS analysis detected the three component elements of the alloy in the nanotube. Heat treatment significantly altered the distinct interface between the nanotubes and the barrier oxide layer.


Titanium Alloy 13Zr Alloy Bimodal Size Distribution Anodization Time Dual Phase Microstructure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Kubota S, Johkura K, Asanuma K, Okouchi Y, Ogiwara N, Sasaki K, Kasuga T (2004) J Mater Sci Mater Med 15:1031PubMedCrossRefGoogle Scholar
  2. 2.
    Oh SH, Finõnes RR, Daraio C, Chen LH, Jin S (2005) Biomaterials 26:4938PubMedCrossRefGoogle Scholar
  3. 3.
    Masuda H, Fukuda K (1995) Science 268:1466PubMedCrossRefADSGoogle Scholar
  4. 4.
    Gong D, Grimes CA, Varghese OK, Hu WC, Sing RS, Chen Z, Dickey EC (2001) J Mater Res 16:3331CrossRefADSGoogle Scholar
  5. 5.
    Macak JM, Tsuchiya H, Ghicov A, Yasuda K, Hahn R, Bauer S, Schmuki P (2007) Curr Opin Solid State Mater Sci 11:3CrossRefGoogle Scholar
  6. 6.
    Elsanousi A, Zhang J, Fadlalla HMH, Zhang F, Wang H, Ding X, Huang Z, Tang C (2008) J Mater Sci 43:7219. doi: 10.1007/s10853-008-2947-9 CrossRefADSGoogle Scholar
  7. 7.
    Tian T, Xiao XF, Liu RF, She HD, Hu XF (2007) J Mater Sci 42:5539. doi: 10.1007/s10853-006-1104-6 CrossRefADSGoogle Scholar
  8. 8.
    Allam NK, Feng XJ, Grimes CA (2008) Chem Mater 20:6477CrossRefGoogle Scholar
  9. 9.
    Jakubowics J (2008) Electrochem Commun 10:735CrossRefGoogle Scholar
  10. 10.
    Popat KC, Leoni L, Grimes CA, Desai TA (2007) Biomaterials 28:3188PubMedCrossRefGoogle Scholar
  11. 11.
    Uchida M, Kim HM, Kokubo T, Fujibayashi S, Nakamura T (2003) J Biomed Mater Res 64:164CrossRefGoogle Scholar
  12. 12.
    Davidson JA, Kovacs P (1992) US Patent 4,169,597Google Scholar
  13. 13.
    Long M, Rack RJ (1998) Biomaterials 19:1621PubMedCrossRefGoogle Scholar
  14. 14.
    Sumner DR, Galante JO (1992) Clin Orthoped Rel Res 274:202Google Scholar
  15. 15.
    Tsuchiya H, Macak JM, Ghicov A, Tang YC, Fujimoto S, Niinomi M, Noda T, Schmuki P (2006) Electrochim Acta 52:94CrossRefGoogle Scholar
  16. 16.
    Mor GK, Varghese OK, Paulose M, Shankar K, Grimes CA (2006) Sol Energy Mater Sol Cells 90:2011CrossRefGoogle Scholar
  17. 17.
    Zwilling V, Ceretti ED, Forveille AB (1999) Electrochim Acta 45:921CrossRefGoogle Scholar
  18. 18.
    Jäger M, Zilkens C, Zanger K, Krauspe R (2007) J Biomed Biotechnol 2007:1CrossRefGoogle Scholar
  19. 19.
    Bai J, Zhou B, Li L, Liu Y, Zheng Q, Shao J, Zhu X, Cai W, Liao J, Zou L (2008) J Mater Sci 43:1880. doi: 10.1007/s10853-007-2418-8 CrossRefADSGoogle Scholar
  20. 20.
    Saji VS, Choe HC (2009) Corros Sci. doi: 10.1016/j.corsci.2009.04.013

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Viswanathan S. Saji
    • 1
  • Han Cheol Choe
    • 1
  • William A. Brantley
    • 2
  1. 1.Department of Dental Materials, School of DentistryChosun UniversityGwangjuKorea
  2. 2.College of DentistryThe Ohio State UniversityColumbusUSA

Personalised recommendations