Journal of Materials Science

, Volume 44, Issue 15, pp 3968–3974 | Cite as

Effect of the La2O3 sol–gel coating on the alumina scale adherence on a model Fe–20Cr–5Al alloy at 1100 °C

  • H. Buscail
  • C. T. Nguyen
  • R. Cueff
  • C. Issartel
  • F. Riffard
  • S. Perrier


The effect of lanthanum sol–gel coatings was studied in order to improve the alumina scale adherence during the model Fe–20Cr–5Al alloy oxidation, at 1100 °C, in air. Various sol–gel coating procedures were applied. Argon annealing of the lanthanum sol–gel coating was tested at temperatures ranging between 600 and 1000 °C. The coating crystallographic nature was characterized by X-ray diffraction (XRD) depending on the annealing temperature. The oxidation process has been examined at 1100 °C by in situ XRD on blank Fe–20Cr–5Al, sol–gel coated and argon-annealed specimens. This study shows that the coating argon annealing at 1000 °C leads to the preferential formation of LaAlO3 instead of La2O3. This coating procedure leads to an alumina scale formation showing the best adherence under thermal cycling conditions at 1100 °C.


Lanthanum Oxide Scale La2O3 LaAlO3 Oxidation Test 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Cueff R, Nguyen CT, Buscail H, Caudron E, Issartel C, Riffard F (2008) Mater Sci Forum 595–598:933CrossRefGoogle Scholar
  2. 2.
    Chevalier S, Tankeu APD, Buscail H, Issartel C, Borchardt G, Larpin JP (2004) Mater Corros 55:610CrossRefGoogle Scholar
  3. 3.
    Cueff R, Buscail H, Caudron E, Riffard F, Issartel C, El Messki S (2004) Appl Surf Sci 229:233CrossRefADSGoogle Scholar
  4. 4.
    Golightly FA, Stott FH, Wood GC (1976) Oxid Met 10:163CrossRefGoogle Scholar
  5. 5.
    Quadakkers WJ, Jedlinski J, Schmidt K, Krasovec M, Borchardt G, Nickel H (1991) Appl Surf Sci 47:261CrossRefADSGoogle Scholar
  6. 6.
    Przybylski K, Garratt-Reed AJ, Pint BA, Katz EP, Yurek GJ (1987) J Electrochem Soc 134:3207CrossRefGoogle Scholar
  7. 7.
    Czerwinski F, Szpunar JA (1997) J Sol-Gel Sci Technol 9:103Google Scholar
  8. 8.
    Pieraggi B (1987) Oxid Met 27:177CrossRefGoogle Scholar
  9. 9.
    Hou PY, Shui ZR, Chuang GY, Stringer J (1992) J Electrochem Soc 139:1119CrossRefGoogle Scholar
  10. 10.
    Fabrichnaya O, Zinkevich M, Aldinger F (2006) Int J Mater Res 97:1495Google Scholar
  11. 11.
    Barrera-Solano C, Esquivias L, Messing GL (1999) J Am Ceram Soc 82:1318Google Scholar
  12. 12.
    Zhang Q, Saito F (2000) J Am Ceram Soc 83:439Google Scholar
  13. 13.
    Ropp RC, Carroll B (1980) J Am Ceram Soc 63:416CrossRefGoogle Scholar
  14. 14.
    Key TS, Crist B Jr (2005) J Am Ceram Soc 88:191CrossRefGoogle Scholar
  15. 15.
    Nair J, Nair P, Mizukami F, Van Ommen JG, Doesburg GBM, Ross JRH, Burggraaf AJ (2000) J Am Ceram Soc 83:1942Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • H. Buscail
    • 1
  • C. T. Nguyen
    • 1
  • R. Cueff
    • 1
  • C. Issartel
    • 1
  • F. Riffard
    • 1
  • S. Perrier
    • 1
  1. 1.LVEEM, Laboratoire Vellave sur l’Elaboration et l’Etude des MatériauxLe Puy-en-Velay CedexFrance

Personalised recommendations