Journal of Materials Science

, Volume 44, Issue 14, pp 3909–3912 | Cite as

Rapid synthesis of TiB2/Fe composite in situ by spark plasma sintering

  • Binghong Li
  • Ying Liu
  • Hui Cao
  • Lin He
  • Jun Li


Metal matrix composites (MMCs) with steel matrix and ceramic particle reinforcements are candidates for structural applications in wear-resistant materials [1, 2, 3]. Conventional production route, such as powder metallurgy (PM), often involves the addition of the reinforcing phases into the metal matrix directly, which could lead to poor wetting behavior between ceramic phase and metal matrix and segregation of reinforcements. Moreover, it is expensive and time consuming to produce MMCs by conventional PM route. Recently, in situ technique has been developed to produce ceramic particle reinforced MMCs. For the in situ technique, reinforcements are formed in situ by the chemical reaction between elements or their compounds during the fabrication process. Compared with the ex situ route, in situ process has advantages such as uniform distribution of reinforcement, finer reinforcement particle size, clear interface and thermodynamically stable reinforcement in the MMCs.



Spark Plasma Sinter Milled Powder TiB2 Particle Spark Plasma Sinter Process Spark Plasma Sinter Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Farid A, Guo SJ, Cui FE, Feng PZ, Lin T (2007) Mater Lett 61:189CrossRefGoogle Scholar
  2. 2.
    Farid A (2008) J Alloys Compd 459:491CrossRefGoogle Scholar
  3. 3.
    Kumar S, Chakraborty M, Sarma VS, Murty BS (2008) Wear 265:134CrossRefGoogle Scholar
  4. 4.
    Munir ZA, Anselmi-Tamburini U (2006) J Mater Sci 41:763. doi: 10.1007/s10853-006-6555-2 ADSCrossRefGoogle Scholar
  5. 5.
    Venkateswaran T, Basu B, Raju GB, Kim DY (2006) J Eur Ceram Soc 26:2431CrossRefGoogle Scholar
  6. 6.
    Eriksson M, Salamon D, Nygren M, Shen ZJ (2008) Mater Sci Eng A 475:101CrossRefGoogle Scholar
  7. 7.
    Kim JS, Kwon YS, Lomovsky OI, Korchagin MA, Mali VI, Dudina DV (2006) Mater Lett 60:3723CrossRefGoogle Scholar
  8. 8.
    Dudina DV, Hulbert DM, Jiang DT, Unuvar C, Cytron SJ, Mukherjee AK (2008) J Mater Sci 43:3569. doi: 10.1007/s10853-008-2563-8 ADSCrossRefGoogle Scholar
  9. 9.
    Du BS, Zou ZD, Wang XH, Qu SY (2008) Appl Surf Sci 254:6489ADSCrossRefGoogle Scholar
  10. 10.
    Wu CF, Ma MX, Liu WJ, Zhong ML, Zhang WM, Zhang HJ (2008) Mater Lett 62:3077CrossRefGoogle Scholar
  11. 11.
    Du BS, Zou ZD, Wang XH, Qu SY (2008) Mater Lett 62:689CrossRefGoogle Scholar
  12. 12.
    Wang Y, Zhang ZQ, Wang HY, Ma BX, Jiang QC (2006) Mater Sci Eng A 422:339CrossRefGoogle Scholar
  13. 13.
    Lepakova OK, Raskolenko LG, Maksimov YM (2004) J Mater Sci 39:3723. doi: 10.1023/B:JMSC.0000030726.29507.2b ADSCrossRefGoogle Scholar
  14. 14.
    Matthews FL, Rawlings R (1994) Composite materials: engineering and science. Chapman & Hall, UkGoogle Scholar
  15. 15.
    Liang YH, Wang HY, Yang YF, Du YL, Jiang QC (2008) Int J Refract Met 26:383CrossRefGoogle Scholar
  16. 16.
    Wang HY, Huang L, Jiang QC (2005) Mater Sci Eng A 407:98CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Binghong Li
    • 1
  • Ying Liu
    • 1
  • Hui Cao
    • 1
  • Lin He
    • 1
  • Jun Li
    • 1
  1. 1.School of Materials Science and EngineeringSichuan UniversityChengduPeople’s Republic of China

Personalised recommendations