Journal of Materials Science

, Volume 44, Issue 14, pp 3867–3876 | Cite as

Compressive properties of a new metal–polymer hybrid material

  • Daniel R. A. Cluff
  • Shahrzad Esmaeili


Compressive properties of a new hybrid material, fabricated through filling of an aluminum foam with a thermoplastic polymer, are investigated. Static (0.01 s−1) and dynamic (100 s−1) compression testing has been carried out to study the behavior of the hybrid material in comparison with its parent foam and polymer materials. Considering the behavior of metal foams, the point on a compressive stress–strain curve corresponding to the minimum cushion factor is defined as the “densification” point. The analysis of the stress–strain curves provides insight into the load carrying and energy absorption characteristics of the hybrid material. At both strain rates, the hybrid is found to carry higher stresses and absorb more energy at “densification” than the foam or polymer.


Foam Hybrid Material Aluminum Foam Metallic Foam Specific Energy Absorption 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank Dr. Sassan Hojabr and DuPont for their advice in the polymer selection and providing the polymer material used in this investigation. The authors would also like to extend their appreciation to Prof. Michael Worswick for the provision of the drop tower facility and Chris Salisbury and Allan Thompson for their assistance in dynamic testing. Financial support for this investigation was provided by University of Waterloo and the Natural Sciences and Engineering Research Council of Canada (NSERC).


  1. 1.
    Ashby MF, Bréchet YJM (2003) Acta Mater 51:5801CrossRefGoogle Scholar
  2. 2.
    Kromm FX, Quenisset JM, Harry R, Lorriot T (2002) Adv Eng Mater 4:371CrossRefGoogle Scholar
  3. 3.
    Gibson LJ, Ashby MF (1982) Proc R Soc Lond A 382:43CrossRefADSGoogle Scholar
  4. 4.
    Maiti SK, Gibson LJ, Ashby MF (1984) Acta Metall 32(11):1963CrossRefGoogle Scholar
  5. 5.
    Gibson LJ, Ashby MF (1998) Cellular solids: structure and properties, 2nd edn. Cambridge University Press, CambridgeGoogle Scholar
  6. 6.
    Dannemann KA, Lankford J Jr (2000) Mater Sci Eng A 293:157CrossRefGoogle Scholar
  7. 7.
    Deshpande VS, Fleck NA (2000) Int J Impact Eng 24:277CrossRefGoogle Scholar
  8. 8.
    Gibson LJ (2000) Annu Rev Mater Sci 30:191CrossRefGoogle Scholar
  9. 9.
    Andrews EW, Gioux G, Onck P, Gibson LJ (2001) Int J Mech Sci 43:701zbMATHCrossRefGoogle Scholar
  10. 10.
    Banhart J (2001) Prog Mater Sci 46:559CrossRefGoogle Scholar
  11. 11.
    Kwon YW, Cooke RE, Park C (2003) Mater Sci Eng A 343:63CrossRefGoogle Scholar
  12. 12.
    McArthur J, Salisbury C, Cronin D, Worswick M, Williams K (2003) Shock Vibration 10:179Google Scholar
  13. 13.
    Zhou J, Gao Z, Cuitino AM, Soboyejo WO (2004) Mater Sci Eng A 386:118Google Scholar
  14. 14.
    Wang Q, Fan Z, Gui L (2006) Int J Solids Struct 43:2064zbMATHCrossRefGoogle Scholar
  15. 15.
    Zhihua W, Hongwei M, Longmao Z, Guitong Y (2006) Scr Mater 54:83Google Scholar
  16. 16.
    Bin J, Zejun W, Naiqin Z (2007) Scr Mater 56:169CrossRefGoogle Scholar
  17. 17.
    Vamsi Krishna B, Bose S, Bandyopadhyay A (2007) Mater Sci Eng 452–453:178Google Scholar
  18. 18.
    Harte AM, Fleck NA, Ashby MF (1999) Acta Mater 47(8):2511CrossRefGoogle Scholar
  19. 19.
    Hanssen AG, Langseth M, Hopperstad OS (2000) Int J Impact Eng 24:347CrossRefGoogle Scholar
  20. 20.
    Tagarielli VL, Fleck NA, Deshpande VS (2004) Adv Eng Mater 6(6):440CrossRefGoogle Scholar
  21. 21.
    Cheng HF, Han FS (2003) Scr Mater 49:583CrossRefGoogle Scholar
  22. 22.
    Cheng HF, Huang XM, Xue GX, Li JR, Han FS (2004) Trans Nonferr Met Soc China 14(5):928Google Scholar
  23. 23.
    Jhaver R, Tippur H (2009) Mater Sci Eng A 499:507CrossRefGoogle Scholar
  24. 24.
    Stöbener K, Lehmus D, Avalle M, Peroni L, Busse M (2008) Int J Solids Struct 45:5627CrossRefGoogle Scholar
  25. 25.
    Wang JF, Liu XY, Luan B (2008) J Mater Process Technol 197:428CrossRefGoogle Scholar
  26. 26.
    DuPontTM (2005) DuPont Packaging and Industrial polymers: DuPontTM Elvax® 205 W, Doc. Ref. nn3bjbm8.pdf, April 2005 Copyright 2005 E.I. du Pont de Nemours and Company, IncGoogle Scholar
  27. 27.
    DuPontTM (2005) DuPont Industrial Polymers: DuPontTM Elvax®. Accessed 9 Sept 2005
  28. 28.
    Cluff DRA (2007) Fabrication of a new model hybrid material and comparative studies of its mechanical properties. MASc Thesis, University of WaterlooGoogle Scholar
  29. 29.
    Thompson AC (2006) High strain rate testing of advanced high strength steels. MASc Thesis, University of WaterlooGoogle Scholar
  30. 30.
    Hsiao HM, Daniel IM (1998) Composites Part B 29:521CrossRefGoogle Scholar
  31. 31.
    Fuganti A, Lorenzi L, Hanssen AG, Langseth M (2000) Adv Eng Mater 2(4):200CrossRefGoogle Scholar
  32. 32.
    Doman D (2004) Modeling of the high rate behaviour of polyurethane rubber. MASc Thesis, University of WaterlooGoogle Scholar
  33. 33.
    Nielson LE (1974) Mechanical properties of polymers and composites, vol 2. Marcel Dekker, New YorkGoogle Scholar
  34. 34.
    Lifshitz JM, Gov F, Gandelsman M (1995) Int J Impact Eng 16(2):201CrossRefGoogle Scholar
  35. 35.
    Shin HS, Lee HM, Kim MS (2000) Int J Impact Eng 24:571CrossRefGoogle Scholar
  36. 36.
    Kaelble DH (1964) In: Internal friction, damping and cyclic plasticity: a symposium presented at the sixty-seventh annual meeting. ASTM, PhiladelphiaGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Mechanical and Mechatronics EngineeringUniversity of WaterlooWaterlooCanada

Personalised recommendations