Skip to main content
Log in

Stress corrosion cracking of 2205 duplex stainless steel in H2S–CO2 environment

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Stress corrosion cracking (SCC) behavior of 2205 duplex stainless steel (DSS) in H2S–CO2 environment was investigated by electrochemical measurements, slow strain rate test (SSRT), and scanning electron microscopy (SEM) characterization. Results demonstrated that the passive current density of steel increases with the decrease of solution pH and the presence of CO2. When solutions pH was 2.7, the steel SCC in the absence and presence of CO2 is expected to be a hydrogen-based process, i.e., hydrogen-induced cracking (HIC) dominates the SCC of the steel. The presence of CO2 in solution does not affect the fracture mechanism. However, the SCC susceptibility is enhanced when the solution is saturated simultaneously with H2S and CO2. With elevation of solution pH to 4.5, the hydrogen evolution is inhibited, and dissolution is involved in cracking process. Even in the presence of CO2, the additional cathodic reduction of H2CO3 would enhance the anodic reaction rate. Therefore, in addition to the hydrogen effect, anodic dissolution plays an important role in SCC of duplex stainless steel at solution pH of 4.5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Oltra R, Desestret A, Mirabal E, Bizouard JP (1987) Corros Sci 27:1251

    Article  CAS  Google Scholar 

  2. Van Gelder K, Erlings JG, Damen JWM, Visser A (1987) Corros Sci 27:1271

    Article  Google Scholar 

  3. Barteri M, Mancia F, Tama A, Montagna G (1987) Corros Sci 27:1239

    Article  CAS  Google Scholar 

  4. El-Yazgi AA, Hardie D (1998) Corros Sci 40:909

    Article  CAS  Google Scholar 

  5. Liu ZD, Huang LM, Gu T (2006) Mater Perform 45:52

    CAS  Google Scholar 

  6. Turnbull A, Nimmo B (2005) Corros Eng Sci Technol 40:103

    Article  CAS  Google Scholar 

  7. Turnbull A, Griffiths A (2003) Corros Eng Sci Technol 38:21

    Article  CAS  Google Scholar 

  8. Moura V, Kina AY, Tavares SSM, Lima LD, Mainier FB (2008) J Mater Sci 43:536. doi:https://doi.org/10.1007/s10853-007-1785-5

    Article  CAS  Google Scholar 

  9. Vasconcelos IF, Tavares SSM, Reis FEU, Hamilton FG (2009) J Mater Sci 44:293. doi:https://doi.org/10.1007/s10853-008-3064-5

    Article  CAS  Google Scholar 

  10. Umoren S, Obot I, Obi-Egbedi N (2009) J Mater Sci 44:274. doi:https://doi.org/10.1007/s10853-008-3045-8

    Article  CAS  Google Scholar 

  11. Xia SA, Zhou BX, Chen WJ (2008) J Mater Sci 43:2990. doi:https://doi.org/10.1007/s10853-007-2164-7

    Article  CAS  Google Scholar 

  12. Radiguet B, Etienne A, Pareige P, Sauvag X, Valiev R (2008) J Mater Sci 43:7338. doi:https://doi.org/10.1007/s10853-008-2875-8

    Article  CAS  Google Scholar 

  13. Sozanska M, Kłyk-Spyra K (2006) Mater Charact 56:399

    Article  CAS  Google Scholar 

  14. De Moraes FD, Bastian FL, Ponciano JA (2005) Corros Sci 47:1325

    Article  Google Scholar 

  15. Zakroczymski T, Owczarek E (2002) Acta Mater 50:2701

    Article  CAS  Google Scholar 

  16. Tsai WT, Chen MS (2000) Corros Sci 42:545

    Article  CAS  Google Scholar 

  17. Tsay LW, Young MC, Shin CS, Chan SLI (2007) Fatigue Fract Eng Mater Struct 30:1228

    Article  CAS  Google Scholar 

  18. Tsai ST, Yen KP, Shin HC (1998) Corros Sci 40:281

    Article  CAS  Google Scholar 

  19. Luu WC, Liu PW, Wu JK (2002) Corros Sci 44:1783

    Article  CAS  Google Scholar 

  20. Owczarek K, Zakroczymski T (2000) Acta Mater 48:3059

    Article  CAS  Google Scholar 

  21. Chinese National Standard for Stress Corrosion Cracking Tests, GB T15970, 2007

  22. ASTM G 30–97 (2003) In: Annual Book of ASTM Standards, vol 03.02. ASTM International, West Conshohocken, PA

  23. Mancia F (1987) Corros Sci 27:1225

    Article  CAS  Google Scholar 

  24. Davies DH, Burstein GT (1980) Corrosion 36:416

    Article  CAS  Google Scholar 

  25. Ren CQ, Liu DX, Bai ZQ, Li T (2005) Mater Chem Phys 93:305

    Article  CAS  Google Scholar 

  26. Nesic S, Nordsveen M, Nyborg R, Stangeland A (2001) In: Corrosion/2001, Paper No. 01040, Nace, Houston

  27. Nesic S, Postlethwaite J, Olsen S (1996) Corrosion 52:280

    Article  CAS  Google Scholar 

  28. Videm K, Kvarekval J (1995) Corrosion 51:260

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Chinese National Science and Technology Infrastructure Platforms Construction Project (No. 2005DKA10400), and Canada Research Chairs Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to X. G. Li or Y. F. Cheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Z.Y., Dong, C.F., Li, X.G. et al. Stress corrosion cracking of 2205 duplex stainless steel in H2S–CO2 environment. J Mater Sci 44, 4228–4234 (2009). https://doi.org/10.1007/s10853-009-3520-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-3520-x

Keywords

Navigation