Skip to main content
Log in

Latex derived blends of poly(vinyl acetate) and natural rubber: thermal and mechanical properties

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Poly(vinyl acetate) (PVAc) and natural rubber blends (NR) were prepared by low shear blending of the corresponding lattices. Thin films were cast using a doctor blade technique. SEM and DMA confirmed the essential immiscibility of the two polymers. Even when the poly(vinyl acetate) forms the matrix phase, it still contains domains encapsulated by a rubber phase where particles that resemble the original latex are visible. This incomplete droplet coalescence of the poly(vinyl acetate) is attributed to the fact that the rubber latex droplets were an order of magnitude smaller than the poly(vinyl acetate) latex droplets. Tensile testing revealed a nonlinear dependence of tensile strength and elongation on blend composition. Surprisingly good tensile yield strengths were obtained at intermediate to high PVAc contents. Thermogravimetric analysis of degradation in air and nitrogen atmospheres indicated independent degradation of the parent polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Paul DR, Sperling LH (1986) Adv Chem Ser 211:1

    Google Scholar 

  2. Gesner BD (1967) Polym Prepr (Am Chem Soc Div Polym Chem) 8:1482

    Google Scholar 

  3. Bergen RL Jr (1967) Polym Prepr (Am Chem Soc Div Polym Chem) 8:1473

    Google Scholar 

  4. Utracki LA, Weiss RA (1989) Multiphase Polymers, ACS Symp Ser 195:1

  5. Dyson RW (1990) Engineering polymers. Chapman and Hall, New York, p 20

    Google Scholar 

  6. Chuu MS, Meyers RR (1987) J Appl Polym Sci 34:1447

    Article  CAS  Google Scholar 

  7. Singh YP, Singh RP (1983) Eur Polym J 19:529

    Article  CAS  Google Scholar 

  8. Brydson JA (1975) Plastics materials, 3rd edn. Newnes-Butterworths, London, p 317

    Google Scholar 

  9. Sivalingam G, Karthik R, Madras G (2004) Polym Degrad Stab 84:345

    Article  CAS  Google Scholar 

  10. Sivalingam G, Karthik R, Madras G (2004) J Appl Polym Sci 93:1378

    Article  CAS  Google Scholar 

  11. Gajria AM, Dave V, Gross RA, McCarthy SP (1996) Polymer 37:437

    Article  CAS  Google Scholar 

  12. Mamza PAAP, Folaranmi FM (1996) Eur Polym J 32:909

    Article  CAS  Google Scholar 

  13. Haiyang Y, Pingping Z, Feng R, Yuanyuan W, Tiao Z (2000) Eur Polym J 36:21

    Article  Google Scholar 

  14. Qiao L, Easteal AJ (2001) Pigment Resin Technol 30:79

    Article  CAS  Google Scholar 

  15. Vidovska D, Maurer FHJ (2006) Compos Interface 13:819

    Article  CAS  Google Scholar 

  16. Winnik MA, Feng J (1996) J Coat Technol 68:39

    CAS  Google Scholar 

  17. Feng J, Winnik MA, Shivers RR, Clubb B (1995) Macromolecules 28:7671

    Article  CAS  Google Scholar 

  18. Lepizzera S, Lhommeau C, Dilger G, Pith T, Lambla M (1997) J Polym Sci Part B: Polym Phys 35:2093

    Article  CAS  Google Scholar 

  19. Robeson LM, Vratsanos MS (2000) Macromol Symp 155:117

    Article  CAS  Google Scholar 

  20. Peng Z, Kong LX, Li S-D, Chen Y, Huang MF (2007) Compos Sci Technol 67:3130

    Article  CAS  Google Scholar 

  21. Ibrahim A, Dahlan M (1998) Prog Polym Sci 23:665

    Article  CAS  Google Scholar 

  22. Pizzi A (1983) Wood adhesives—chemistry and technology. Marcel Dekker, New York, p 328

    Google Scholar 

  23. Farris RJ (1968) Trans Soc Rheol 12:281

    Article  Google Scholar 

  24. Brandrup J, Immergut EH (1989) Polymer handbook, 3rd edn. Wiley, New York

    Google Scholar 

  25. Young RJ (1981) Introduction to polymers. Chapman and Hall, London, p 206

    Book  Google Scholar 

  26. Sivalingam G, Karthik R, Madras G (2003) Ind Eng Chem Res 42:3647

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support for this research from the Institutional Research Development Programme (IRDP) of the National Research Foundation (NRF), the University of the Free State and the University of Pretoria is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter W. Focke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ochigbo, S.S., Luyt, A.S. & Focke, W.W. Latex derived blends of poly(vinyl acetate) and natural rubber: thermal and mechanical properties. J Mater Sci 44, 3248–3254 (2009). https://doi.org/10.1007/s10853-009-3435-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-3435-6

Keywords

Navigation