Journal of Materials Science

, Volume 44, Issue 12, pp 3112–3117 | Cite as

Photocatalytic oxidation of dibenzothiophene using TiO2/bamboo charcoal



Photocatalytic oxidation of dibenzothiophene (DBT) using TiO2-loaded bamboo charcoals (BC) prepared by wet impregnation was studied. Results obtained here can be used as the reference for evaluating reactions in hydrocarbons, which aims at the development of an oxidative desulfurization process for fuel oils. Technological conditions (the amount of photocatalysts, hydrogen peroxide, and TiO2 loading) were also investigated in detail. The results show that TiO2/BC improves the dispersed degree of TiO2 catalyst, which shows a better photocatalytic performance than pure TiO2. We also found a special characterization of TiO2/BC, it can locate just at the oil–water phase boundary. The oxidation proceeds in the oil phase and most of the oxidation products transfer to water phase, resulting in the successive removal of DBT from the n-octane phase without additional extraction by solvent. In addition, kinetics parameters of the photocatalytic oxidation of DBT were measured and calculated. The result shows the kinetics of photocatalytic oxidation of DBT is first order.


TiO2 Desulfurization Pure TiO2 Photocatalytic Oxidation Removal Ratio 



This research was supported by Grant 20276015 from National Natural Science Foundation of China and Grant 203364 from National Natural Science Foundation of HeBei province.


  1. 1.
    Dumont V, Oliviero L, Mauge F, Houalla M (2008) Catal Today 130:195CrossRefGoogle Scholar
  2. 2.
    Villasen F, Loera O, Campero A, Viniegra-González G (2004) Fuel Process Technol 86:49CrossRefGoogle Scholar
  3. 3.
    Wang DE, Qian WH, Amano H, Okata K, Ishihara A, Kabe T (2003) Appl Catal A Gen 253:91CrossRefGoogle Scholar
  4. 4.
    Shiraishi Y, Taki Y, Hirai T, Komasawa I (1998) Chem Commun 5:2601CrossRefGoogle Scholar
  5. 5.
    Vasily H, Fajula F, Bousquet J (2001) J Catal 198:179CrossRefGoogle Scholar
  6. 6.
    Lina Y, Jian L, Xingdong Y, Sh Jian, Yutai Q (2007) J Mol Catal A Chem 262:114CrossRefGoogle Scholar
  7. 7.
    Matsuzawa S, Tanaka J, Sato S, Ibusuki T (2002) J Photochem Photobiol A Chem 149:183CrossRefGoogle Scholar
  8. 8.
    Hirai T, Ogawa K, Komasawa I (1996) Ind Eng Chem Res 35:586CrossRefGoogle Scholar
  9. 9.
    Hirai T, Shiraishi Y, Ogawa K, Komasawa I (1997) Ind Eng Chem Res 36:530CrossRefGoogle Scholar
  10. 10.
    Shiraishi Y, Hirai T, Komasawa I (1999) J Chem Eng Jpn 32:158CrossRefGoogle Scholar
  11. 11.
    Hiroyuki U, Shigeyoshi I, Hiroshi Y (1993) Chem Lett 12:1995Google Scholar
  12. 12.
    Tsukasa T, Shigeyoshi I, Susumu K, Hiroshi Y (1996) Environ Sci Technol 30:1275CrossRefGoogle Scholar
  13. 13.
    Chen SF (1997) J Environ Sci 9:278Google Scholar
  14. 14.
    Hiroaki T, Akihiko H (2000) J Phys Chem B 104:4585CrossRefGoogle Scholar
  15. 15.
    Zhe O, Jin H (2000) Langmuir 16:6216CrossRefGoogle Scholar
  16. 16.
    Zhe Y (2000) Appl Surf Sci 158:3237Google Scholar
  17. 17.
    Zh Liuxue, Peng L, Zhixing S (2006) J Mater Sci 41:7218. doi: 10.1007/s10853-006-0917-7 CrossRefADSGoogle Scholar
  18. 18.
    Wu C-H, Shr J-F, Wu C-F, Hsieh C-T (2008) J Mater Process Technol 203:326CrossRefGoogle Scholar
  19. 19.
    Chuang CS, Wang M-K, Ko C-H, Ou C-C, Wu C-H (2008) Bioresour Technol 99:954PubMedCrossRefGoogle Scholar
  20. 20.
    Dishun Zh, Juan Zh, Erhong D, Jinlong W (2008) Appl Surf Sci 254:3242CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Juan Zhang
    • 1
  • Dishun Zhao
    • 1
    • 2
  • Jinlong Wang
    • 2
  • Liyan Yang
    • 1
  1. 1.College of Chemistry and Pharmaceutical EngineeringHebei University of Science and TechnologyShijiazhuangChina
  2. 2.School of Chemical Engineering and TechnologyTianjin UniversityTianjinChina

Personalised recommendations