Skip to main content
Log in

Interactions of gamma rays with tungsten-doped lead phosphate glasses

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Undoped lead phosphate glass of the composition PbO 50 mol%, P2O5 50 mol% together with samples of the same ratio doped with various WO3 contents were prepared. UV–Visible spectroscopic studies were measured out in the range 200–1100 nm before and after successive gamma irradiation. Infrared and Raman spectroscopic measurements were carried out for the undoped and WO3-doped samples. All the prepared samples are observed to absorb strongly in the UV region due to the combined contributions of absorption from trace iron impurities and sharing of lead Pb2+ ions. The bluish WO3-doped lead phosphate samples reveal visible absorption bands which are attributed to the existence of pentavalent W5+ ions. ESR measurements support this assumption. Infrared and Raman spectra indicate the presence of metaphosphate chains as the structural main building units and the possible presence of appreciable pentavalent (W5+O3) of W5+ units together with hexavalent WO4 units. Gamma irradiation reveal the shielding behaviour of the studied tungsten-doped lead phosphate glasses due to the combined presence of heavy Pb2+ ions and tungsten ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. McMillan PW (1979) Glass-ceramics, 2nd edn. Academic Press, London, p 82

    Google Scholar 

  2. Bamford CR (1977) Colour generation and control in glass, glass science and technology, vol 2. Elsevier Scientific Publishing Company, Amsterdam, p 118

    Google Scholar 

  3. Cotton FA, Wilkinson G, Murillo CA, Buchmann M (1999) Advanced inorganic chemistry, 6th edn. Wiley, New York

    Google Scholar 

  4. Selvaraj U, Rao KJ (1985) J Non-Cryst Solids 75:315

    Article  Google Scholar 

  5. Selvaraj U, Kershava Sunder HG, Rao KJ (1989) J Chem Soc Faraday Trans 85:251

    Article  CAS  Google Scholar 

  6. Muthupari S, Kulkarni GU, Rao KJ (1994) Bull Mater Sci 17:1029

    Article  CAS  Google Scholar 

  7. Muthupari S, Rao KJ (1996) J Phys Chem Solids 57:553

    Article  CAS  Google Scholar 

  8. Nadiri A, Yacoubi A, Bih L, Haddad M, Levaseur A (1990) Adv Mater Res 1–2:413

    Google Scholar 

  9. Boudlich D, Bih L, ElHassan Archidi M, Haddad M, Yacoubi A, Nadiri A, Eloudi B (2002) J Am Ceram Soc 85:623

    Article  CAS  Google Scholar 

  10. Poirier G, Poulain M, Messddeq Y, Ribeiro SJL (2005) J Non-Cryst Solids 351:293

    Article  CAS  Google Scholar 

  11. ElKhshen AA, ElBatal FH, Marzouk SY (2008) Indian J Pure Appl Phys 46:225

    Google Scholar 

  12. Haddad M, Nadiri A, Biyadi A, Archidi ME, Folgado JV, Beltran-Porter D (1992) J Alloys Compd 188:161

    Article  CAS  Google Scholar 

  13. ElBatal FH, Marzouk SY, EzzElDin FM (2009) Physica (B) (under publication)

  14. Duffy JA (1999) Phys Chem Glasses 38:289

    Google Scholar 

  15. Natura U, Ehrt D, Naumann K (2001) Glastech Ber Glass Sci Technol 74:23

    CAS  Google Scholar 

  16. Sigel GH Jr, Ginther RJ (1968) Glass Technol 9:66

    CAS  Google Scholar 

  17. Ehrt D, Ebeling P, Natura U (2000) J Non-Cryst Solids 263& 264:240

    Article  Google Scholar 

  18. Cook L, Mader KH (1982) J Am Ceram Soc 65:109

    Article  Google Scholar 

  19. Moncke D, Ehrt D (2004) Opt Mater 25:425

    Article  CAS  Google Scholar 

  20. ElBatal FH, Abo-Naf SM, EzzElDin FM (2005) Indian J Pure Appl Phys 43:574

    Google Scholar 

  21. Marzouk SY, ElBatal FH (2006) Nucl Instrum Methods Phys Res (B) 248:90

    Article  CAS  Google Scholar 

  22. ElBatal FH, ElKheshen AA, Azooz MA, AboNaf SM (2008) Opt Mater 30:881

    Article  CAS  Google Scholar 

  23. Little Flower G, Sahaya Baskaran G, Krishna Mohan N, Verraiah N (2006) Mater Chem Phys 100:211

    Article  Google Scholar 

  24. Dayanand C, Bhikshamaiah G, Tyagaraju VJ, Salagram M, Krishna Murthy ASR (1996) J Mater Sci 31:1945. doi:https://doi.org/10.1007/BF00356615

    Article  CAS  Google Scholar 

  25. Shaltout I, Tang Y, Braunstein R, Abou ElAzm MA (1995) J Phys Chem Solids 56:141

    Article  CAS  Google Scholar 

  26. Shaltout I, Tang Y, Braunstein R, Shaisha EE (1996) J Phys Chem Solids 57:1223

    Article  CAS  Google Scholar 

  27. Sekiya T, Mochida N, Ogawa S (1994) J Non-Cryst Solids 176:105

    Article  CAS  Google Scholar 

  28. Charton P, Cengewbre I, Armand P (2002) J Solid State Chem 16:175

    Article  Google Scholar 

  29. Dimitrov V, Arnaudov M, Dimitriev YB (1984) Monatschfte Chem 115:987

    Article  CAS  Google Scholar 

  30. Subbalakshmi P, Verraiah N (2003) J Phys Chem Solids 64:1027

    Article  CAS  Google Scholar 

  31. Abdellouhab RM, Braunstein R, Barner K (1989) J Non-Cryst Solids 108:109

    Article  Google Scholar 

  32. Von Dirke M, Muller S, Barver K, Rager H (1990) J Non-Cryst Solids 124:265

    Article  Google Scholar 

  33. Fruchardt JM, Herve G, Launary J, Massart R (1976) J Inorg Nucl Chem 38:1627

    Article  Google Scholar 

  34. Koffuberg FP, Benko FA (1980) J Non-Cryst Solids 40:7

    Article  Google Scholar 

  35. Salje E, Hoppmann G (1981) Philos Mag B 43:105

    Article  CAS  Google Scholar 

  36. Kleperis JJ, Cikmach PD, Lusis AR (1984) Phys State Solidi (A) 83:291

    Article  CAS  Google Scholar 

  37. Bishay A (1970) J Non-Cryst Solids 3:54

    Article  Google Scholar 

  38. Friebele EJ, Griscom DL (1979) In: Doremus RH, Tomozawa M (eds) Treatise on materials science and technology, 17th edn. Academic Press, New York, p 257

    Google Scholar 

  39. Friebele EJ (1991) In: Uhlmann DR, Kreidl NJ (eds) Optical properties of glass. American Ceramic Society, Westerville, OH, p 205

    Google Scholar 

  40. BeekenKamp P (1965), Thesis, Technical University, Eindhoven

  41. Arichidi ME, Haddad M, Naddiri A, Benyaich F, Berger R (1996) Nucl Instr Meth Phys Res B 116:145

    Article  Google Scholar 

  42. Ewing RC, Weber WJ, Chinard FW (1995) Prog Nucl Energy 29(1):61

    Google Scholar 

  43. Singh H, Singh K, Germand L, Sahota HS, Nathuram R (2002) Nucl-Inst Meth Phys (B) 207:257

    Article  Google Scholar 

  44. ElBatal FH, Azooz MA, Ezz ElDin FM (2002) Phys Chem Glasses 43:260

    CAS  Google Scholar 

  45. Singh N, Singh KJ, Singh K, Singh H (2004) Nucl Inst Meth Phys Res (B) 225:305

    Article  CAS  Google Scholar 

  46. ElBatal FH (2007) Nucl Instr Meth Phys B 254:243

    Article  CAS  Google Scholar 

  47. Moncke D, Ehrt D (2006) J Non-Cryst Solids 352:2631

    Article  Google Scholar 

  48. Tarte P (1982) Spectrochim Acta 18:467

    Article  Google Scholar 

  49. Condrate R (1972) Introduction to glass science. New York, Plenum Press, p 101

    Book  Google Scholar 

  50. Nelson BN, Exhahosr GJ (1979) J Chem Phys 71:2379

    Article  Google Scholar 

  51. Efimov AM (1997) J Non-Cryst Solids 209:209

    Article  CAS  Google Scholar 

  52. Moustafa YM, El Egili K (1998) J Non-Cryst Solids 240:144

    Article  CAS  Google Scholar 

  53. Znacik P, Jamnicky M (1992) J Non-Cryst Solids 146:74

    Article  Google Scholar 

  54. Abdel-Kader A, Higazy AA, ElKholy MM (1991) J Mater Electron 5:15

    Google Scholar 

  55. Exarhos GJ (1986) In: Warlrafen GE, Revez AG (eds) Strucure and bonding in non-cryst solids. Plenum Press, New York, p 203

    Chapter  Google Scholar 

  56. Chowdari BVR, Tan KI, Chia WT, Gopala Krishnan R (1990) J Non-Cryst Solids 119:95

    Article  CAS  Google Scholar 

  57. Montagne L, Palrit G, Mairesse G (1996) Phys Chem Glasses 37:206

    CAS  Google Scholar 

  58. Husung RD, Doremus RD (1990) J Mater Res 25:2209

    Article  Google Scholar 

  59. Chahine A, El-Tabirou M, El-Banaisci M, Haddad M, Pascal JL (2004) Mater Chem Phys 84:41

    Article  Google Scholar 

  60. ElBatal FH (2008) J Mater Sci 43:1070. doi:https://doi.org/10.1007/s10853-007-2254-x

    Article  CAS  Google Scholar 

  61. Maczka M, Waskomska A, Hmuza J (2006) J Solid State Chem 179:103

    Article  CAS  Google Scholar 

  62. Maczka M, Maclik B, Hamuza J, Waskomska A (2006) J Non-Cryst Solids 352:5586

    Article  CAS  Google Scholar 

  63. Wong J, Angell CA (1976) Glass structure by vibrational spectroscopy. Marcel Dekker, New York

    Google Scholar 

  64. Kao J, Bae B, Na H (1997) J Non-Cryst Solids 212:173

    Article  Google Scholar 

  65. Tallant DR, Nelson C, Wilder JA (1986) Phys Chem Glasses 27:71

    CAS  Google Scholar 

  66. Morgan SH, Magruder RH, Silberman E (1987) J Am Ceram Soc 70:70

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatma Hatem ElBatal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

ElBatal, F.H., Marzouk, S.Y. Interactions of gamma rays with tungsten-doped lead phosphate glasses. J Mater Sci 44, 3061–3071 (2009). https://doi.org/10.1007/s10853-009-3406-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-3406-y

Keywords

Navigation