Journal of Materials Science

, Volume 44, Issue 11, pp 2957–2965 | Cite as

Influence of martensite morphology on the work-hardening behavior of high strength ferrite–martensite dual-phase steel

  • Debdulal Das
  • Partha Protim Chattopadhyay


This study concerns influence of martensite morphology on the work-hardening behavior of high-strength ferrite–martensite dual-phase (DP) steel. A low-carbon microalloyed steel was subjected to intermediate quenching (IQ), step quenching (SQ), and intercritical annealing (IA) to develop different martensite morphologies, i.e., fine and fibrous, blocky and banded, and island types, respectively. Analyses of work-hardening behavior of the DP microstructures by differential Crussard–Jaoul technique have demonstrated three stages of work-hardening for IQ and IA samples, whereas the SQ sample revealed only two stages. Similar analyses by modified Crussard–Jaoul technique showed only two stages of work-hardening for all the samples. Among different treatments, IQ route has yielded the best combination of strength and ductility due to its superior work-hardening behavior. The influence of martensite morphology on nucleation and growth of microvoids/microcracks has been correlated with the observed tensile ductility.


Ferrite Austenite Martensite Intercritical Annealing Tensile Fracture Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Piplani RK, Raghavan V (1981) Steel India 4:1Google Scholar
  2. 2.
    Speich GR (1981) In: Kot RA, Bramfitt BL (eds) Fundamentals of dual phase steels. AIME, New York, p 1Google Scholar
  3. 3.
    Jiang Z, Lian J, Guan Z (1995) Mater Sci Eng A190:55Google Scholar
  4. 4.
    Davies RG (1979) Metall Trans A 10:113CrossRefGoogle Scholar
  5. 5.
    Bag A, Ray KK, Dwarakadasa ES (1999) Metall Trans A 30:1193CrossRefGoogle Scholar
  6. 6.
    Byun TS, Kim IS (1993) J Mater Sci 28:2923. doi: 10.1007/BF00354695 CrossRefGoogle Scholar
  7. 7.
    Koo JY, Young MJ, Thomos G (1980) Metall Trans A 11:852CrossRefGoogle Scholar
  8. 8.
    Tomita Y (1990) J Mater Sci 25:5179. doi: 10.1007/BF00580148 CrossRefGoogle Scholar
  9. 9.
    Sankar S, Sangal S, Padmanabhan KA (2005) Mater Sci Technol 21:1152CrossRefGoogle Scholar
  10. 10.
    Erdogan M (2002) J Mater Sci 37:3623. doi: 10.1023/A:1016548922555 CrossRefGoogle Scholar
  11. 11.
    Hollomon JH (1945) Trans AIME 162:268Google Scholar
  12. 12.
    Crussard C (1953) Rev Metall 10:697Google Scholar
  13. 13.
    Jaoul B (1957) J Mech Phys Solids 5:95CrossRefADSGoogle Scholar
  14. 14.
    Monteiro SN, Reed-Hill RE (1971) Met Trans 2:2947CrossRefGoogle Scholar
  15. 15.
    Mamos LF, Matlock DK, Krauss G (1979) Metall Trans A 10:259CrossRefGoogle Scholar
  16. 16.
    Samuel FH (1987) Mater Sci Eng 92:L1CrossRefGoogle Scholar
  17. 17.
    Jha BK, Avtar R, Dwivedi VS, Ramaswamy V (1987) J Mater Sci Lett 6:891CrossRefGoogle Scholar
  18. 18.
    Jiang Z, Jian L, Chen J (1992) Mater Sci Tech 8:1075Google Scholar
  19. 19.
    Ludwik P (1909) Element der Technolnischen Mechanick. Springer, Berlin, p 32Google Scholar
  20. 20.
    Swift HW (1952) J Mech Phys Solids 1:1CrossRefADSGoogle Scholar
  21. 21.
    Kang S, Kwon H (1987) Metall Trans A 18:1587CrossRefGoogle Scholar
  22. 22.
    Das P, Chattopadhyay PP, Bandyopadhyay NR (2003) J Met Mater Eng 84:84Google Scholar
  23. 23.
    Gural A, Tekeli S, Ando T (2006) J Mater Sci 41:7894. doi: 10.1007/s10853-006-0871-4 CrossRefGoogle Scholar
  24. 24.
    Chunling Z, Dayong C, Bo L, Tianchen Z, Yunchang F (2004) J Mater Sci 39:4393. doi: 10.1023/B:JMSC.0000033436.06575.aa CrossRefGoogle Scholar
  25. 25.
    Soto R, Saikaly W, Bano X, Issartel C, Rigaut G, Charai A (1999) Acta Mater 47:3475CrossRefGoogle Scholar
  26. 26.
    Wang ZG, Al SH (1999) ISIJ Int 39:747CrossRefGoogle Scholar
  27. 27.
    Kim NJ, Thomas G (1981) Metall Trans A 12:483CrossRefGoogle Scholar
  28. 28.
    Bayram A, Uguz A, Murat U (1999) Mater Charact 43:259CrossRefGoogle Scholar
  29. 29.
    Umemoto M, Tsuchiya K, Liu ZG, Sugimoto S (2000) Metall Trans A 31:1785CrossRefGoogle Scholar
  30. 30.
    Tomita Y, Okabayashi K (1985) Metall Trans A 16:73CrossRefGoogle Scholar
  31. 31.
    Sarwar M, Priestner R (1996) J Mater Sci 31:2091. doi: 10.1007/BF00356631 CrossRefGoogle Scholar
  32. 32.
    Nam WJ, Bae CM (1999) J Mater Sci 34:5661. doi: 10.1023/A:1004705705208 CrossRefGoogle Scholar
  33. 33.
    Ahmad E, Sarwar M, Manzoor T, Hussain N (2006) J Mater Sci 41:5417. doi: 10.1007/s10853-006-0266-6 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Metallurgy and Materials EngineeringBengal Engineering and Science UniversityHowrahIndia

Personalised recommendations