Skip to main content

Advertisement

Log in

Synthesis and characterization of anodized titanium-oxide nanotube arrays

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Anodized titanium-oxide containing highly ordered, vertically oriented TiO2 nanotube arrays is a nanomaterial architecture that shows promise for diverse applications. In this paper, an anodization synthesis using HF-free aqueous solution is described. The anodized TiO2 film samples (amorphous, anatase, and rutile) on titanium foils were characterized with scanning electron microscopy, X-ray diffraction, and Raman spectroscopy. Additional characterization in terms of photocurrent generated by an anode consisting of a titanium foil coated by TiO2 nanotubes was performed using an electrochemical cell. A platinum cathode was used in the electrochemical cell. Results were analyzed in terms of the efficiency of the current generated, defined as the ratio of the difference between the electrical energy output and the electrical energy input divided by the input radiation energy, with the goal of determining which phase of TiO2 nanotubes leads to more efficient hydrogen production. It was determined that the anatase crystalline structure converts light into current more efficiently and is therefore a better photocatalytic material for hydrogen production via photoelectrochemical splitting of water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Grimes CA (2007) J Mater Chem 17:1451

    Article  CAS  Google Scholar 

  2. Mor GK, Varghese OK, Paulose M, Shankar K, Grimes CA (2006) Sol Energ Mater Sol Cells 90:2011

    Article  CAS  Google Scholar 

  3. Bolton JR (1996) Sol Energy 57:37

    Article  CAS  Google Scholar 

  4. Fujishima A, Honda K (1972) Nature 238:37

    Article  CAS  Google Scholar 

  5. Glasscock JA, Barnes PRF, Plumb IC, Bendavid A, Martin PJ (2006). In: Vayssieres L (ed) Solar hydrogen and nanotechnology. Proceedings of the SPIE, vol 6340, pp 63400

  6. Torres RG, Gemma L, Torbjörn LJ, Granqvist C-G, Lindquist SE (2004) J Phys Chem B 108(19):5995

    Article  CAS  Google Scholar 

  7. Khan SUM, Al-Shahry M, Ingler WB Jr (2002) Science 297:2243

    Article  CAS  Google Scholar 

  8. Lin C-L, Chien S-H, Chao J-H, Sheu C-Y, Huang Y-J, Tsai C-H (2002) Catal Lett 80:153

    Article  CAS  Google Scholar 

  9. Park JH, Park OO, Kim S (2006) Appl Phys Lett 89:163106

    Article  Google Scholar 

  10. Varghese OK, Gong D, Paulose M, Grimes CA, Dickey EC (2003) J Mater Res 18:156

    Article  CAS  Google Scholar 

  11. Varghese OK, Mor GK, Grimes CA, Paulose M (2004) J Nanosci Nanotechnol 4:733

    Article  CAS  Google Scholar 

  12. Mor GK, Varghese OK, Pishko MV, Grimes CA (2004) J Mater Res 19:628

    Article  CAS  Google Scholar 

  13. Kasuga T, Hiramatsu M, Hirano M, Hoson A (1997) J Mater Res 12:607

    Article  CAS  Google Scholar 

  14. Dagan G, Tomkiewicz M (1993) J Phys Chem 97:12651

    Article  CAS  Google Scholar 

  15. Yang BC, Uchida M, Kim HM, Zhang XD, Kokubo T (2004) Biomaterials 25:1003

    Article  CAS  Google Scholar 

  16. Sul YT, Johansson CB, Jeong Y, Albrektsson T (2001) Med Eng Phys 23:329

    Article  CAS  Google Scholar 

  17. Gong D, Grimes CA, Varghese OK, Dickey EC (2001) J Mater Res 16:3331

    Article  CAS  Google Scholar 

  18. Beranek R, Hildebrand H, Schmuki P (2003) Electrochem Solid State Lett 6:B12

    Article  CAS  Google Scholar 

  19. Ruan CM, Wang W, Gu B (2006) Anal Chim Acta 576:114

    Article  Google Scholar 

  20. Chen X, Mao SS (2007) Chem Rev 107:2891

    Article  CAS  Google Scholar 

  21. Giolli C, Borgioli F, Credi A, Di Fabio A, Fossati A, Miranda MM, Parmeggiani S, Rizzi G, Scrivani A, Troglio S, Tolstoguzov A, Zoppi A, Bardi U (2007) Surf Coat Technol 202:13

    Article  CAS  Google Scholar 

  22. Orendorz A, Brodyanski A, Losch J, Bai LH, Chen ZH, Le YK, Ziegler C, Gnaser H (2007) Surf Sci 601:4390

    Article  CAS  Google Scholar 

  23. Serpone N, Pelizzetti E (1989) Photocatalysis fundamentals and applications. Wiley & Sons, New York

    Google Scholar 

  24. Schiavello M (ed) (1988) Photocatalysis and environment trends and applications. Kluwer Academic, Dordrecht

    Google Scholar 

  25. Thomas AG, Flavell WR, Mallick AK, Kumarasinghe AR, Tsoutsou D, Khan N, Chatwin C, Rayner S, Smith GC, Stockbauer RL, Warren S, Johal TK, Patel S, Holland D, Taleb A, Wiame F (2007) Phys Rev B 75(1–12):035105

    Article  Google Scholar 

  26. Sciafani A, Herrmann JM (1996) J Phys Chem 100:13655

    Article  Google Scholar 

  27. Chuan X-Y, Lu AH, Chen J, Li N, Guo YJ (2008) Mineral Petrol 93:143

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Department of Energy, Office of Basic Energy Sciences, Department of Materials Science and Engineering Program and by the Laboratory Directed Research and Development (LDRD) program of ORNL. ORNL is managed by UT-Battelle, LLC, for the US Department of Energy, under contract no. DE-AC05-00OR22725.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Z. Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, M.Z., Lai, P., Bhuiyan, M.S. et al. Synthesis and characterization of anodized titanium-oxide nanotube arrays. J Mater Sci 44, 2820–2827 (2009). https://doi.org/10.1007/s10853-009-3372-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-3372-4

Keywords

Navigation