Journal of Materials Science

, Volume 44, Issue 10, pp 2541–2547 | Cite as

Preparation and mesostructure control of highly ordered zirconia particles having crystalline walls

  • Hirobumi Shibata
  • Tomoaki Morita
  • Taku Ogura
  • Keishi Nishio
  • Hideki Sakai
  • Masahiko Abe
  • Mutsuyoshi Matsumoto


Mesostructured zirconia particles having monoclinic-type crystalline walls were prepared using a low-temperature crystallization technique. Crystalline zirconia particles with highly-ordered mesostructures were obtained through the sol–gel process of zirconium sulfate tetrahydrate at 333 K in the presence of molecular self-assemblies of cetyltrimethylammonium bromide (CTAB) or mixtures of CTAB and anionic molecules such as sodium dodecyl sulfate and sodium p-toluenesulfonate. Variations in the molar ratios of CTAB and the chemical species of anionic molecules led to the variations in the periods of highly-ordered zirconia having crystalline walls. Calcination of the mesostructured zirconia particles prepared using templates consisting solely of CTAB yielded crystalline mesoporous zirconia particles.


Zirconia CTAB Cationic Surfactant Mesoporous Material Zirconium Sulfate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Nature 359:710CrossRefADSGoogle Scholar
  2. 2.
    Attard GS, Glyde JC, Goltner CG (1995) Nature 378:366CrossRefADSGoogle Scholar
  3. 3.
    Davis SA, Burkett SL, Mendelson NH, Mann S (1997) Nature 385:420CrossRefADSGoogle Scholar
  4. 4.
    Huo Q, Leon R, Petroff PM, Stucky GD (1995) Science 268:1324PubMedCrossRefADSGoogle Scholar
  5. 5.
    Ogawa M, Kikuchi T (1998) Adv Mater 14:1077CrossRefGoogle Scholar
  6. 6.
    Zhang Y, Weidenkaff A, Reller A (2002) Mater Lett 54:375CrossRefGoogle Scholar
  7. 7.
    Huo Q, Margolese DI, Stucky GD (1996) Chem Mater 8:1147CrossRefGoogle Scholar
  8. 8.
    Ogawa M (1994) J Am Chem Soc 116:7941CrossRefGoogle Scholar
  9. 9.
    Ogawa M (1997) Langmuir 13:1853CrossRefGoogle Scholar
  10. 10.
    Lebeau B, Fowler CE, Hall SR, Mann S (1999) J Mater Chem 9:2279CrossRefGoogle Scholar
  11. 11.
    Sayari A, Yang Y, Kruk M, Jeroniec M (1999) J Phys Chem B 103:3651CrossRefGoogle Scholar
  12. 12.
    Lind A, Spliethoff B, Lindèn M (2003) Chem Mater 15:813CrossRefGoogle Scholar
  13. 13.
    Pevzner S, Regev O, Lind A, Lindèn M (2003) J Am Chem Soc 125:652PubMedCrossRefGoogle Scholar
  14. 14.
    Chen F, Song F, Li Q (1999) Microporous Mesoporous Mater 29:305CrossRefGoogle Scholar
  15. 15.
    Khushalani D, Kuperman N, Coombs N, Ozin GA (1996) Chem Mater 8:2188CrossRefGoogle Scholar
  16. 16.
    Dai LR, Wang TW, Bu LT, Chen G (2001) Colloids Surf A 181:151CrossRefGoogle Scholar
  17. 17.
    Ryoo R, Joo SH, Kim JM (1999) J Phys Chem B 103:7435CrossRefGoogle Scholar
  18. 18.
    Qi L, Ma J, Cheng H, Zhao Z (1998) Chem Mater 10:1623CrossRefGoogle Scholar
  19. 19.
    Haseloh S, Choi SY, Mamak M, Coombs N, Petrov S, Chopra N, Ozin GA (2004) Chem Commun 1460Google Scholar
  20. 20.
    Choi SY, Mamak M, Coombs N, Chopra N, Ozin GA (2004) Adv Funct Mater 14:335CrossRefGoogle Scholar
  21. 21.
    Choi SY, Mamak M, Speakman S, Chopra N, Ozin GA (2005) Small 1:226PubMedCrossRefGoogle Scholar
  22. 22.
    Yang P, Zhao D, Margolese DI, Chmelka BF, Stucky GD (1998) Nature 396:152CrossRefADSGoogle Scholar
  23. 23.
    Kapoor MP, Inagaki S, Ikeda S, Kakiuchi K, Suda M, Shimada T (2005) J Am Chem Soc 127:8174PubMedCrossRefGoogle Scholar
  24. 24.
    Kapoor MP, Yang Q, Inagaki S (2004) Chem Mater 16:1209CrossRefGoogle Scholar
  25. 25.
    Katou T, Lee B, Lu D, Kondo JN, Hara M, Domen K (2003) Angew Chem 115:2484CrossRefGoogle Scholar
  26. 26.
    Liu B, Baker RT (2008) J Mater Chem 18:5200CrossRefGoogle Scholar
  27. 27.
    Shibata H, Ogura T, Mukai T, Ohkubo T, Sakai H, Abe M (2005) J Am Chem Soc 127:16396PubMedCrossRefGoogle Scholar
  28. 28.
    Shibata H, Mihara H, Mukai T, Ogura T, Kohno H, Ohkubo T, Sakai H, Abe M (2006) Chem Mater 18:2256CrossRefGoogle Scholar
  29. 29.
    Babou F, Coudurier G, Vedrine JC (1995) J Catal 152:341CrossRefGoogle Scholar
  30. 30.
    Tatsumi T, Matsuhashi H, Arata K (1996) Bull Chem Soc Jpn 69:1191CrossRefGoogle Scholar
  31. 31.
    Sun Y, Ma S, Du Y, Yuan L, Wang S, Yang J, Deng F, Xiao F-S (2005) J Phys Chem B 109:2567PubMedCrossRefGoogle Scholar
  32. 32.
    Butt H-J, Graf K, Kappl M (2006) Physics and chemistry of interface. Wiley, WeinheimGoogle Scholar
  33. 33.
    Salkar RA, Mukesh D, Samant SD, Manohar C (1998) Langmuir 14:3778CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Hirobumi Shibata
    • 1
  • Tomoaki Morita
    • 1
  • Taku Ogura
    • 2
  • Keishi Nishio
    • 1
  • Hideki Sakai
    • 2
    • 3
  • Masahiko Abe
    • 2
    • 3
  • Mutsuyoshi Matsumoto
    • 1
    • 3
  1. 1.Faculty of Industrial Science and TechnologyTokyo University of ScienceChibaJapan
  2. 2.Faculty of Science and TechnologyTokyo University of ScienceChibaJapan
  3. 3.Institute of Colloid and Interface ScienceTokyo University of ScienceTokyoJapan

Personalised recommendations