Advertisement

Journal of Materials Science

, 44:6490 | Cite as

Three-dimensional titania pore structures produced by using a femtosecond laser pulse technique and a dip coating procedure

  • Falk Heinroth
  • Simon Münzer
  • Armin Feldhoff
  • Sven Passinger
  • Wei Cheng
  • Carsten Reinhardt
  • Boris Chichkov
  • Peter Behrens
Mesostructured Materials

Abstract

In this work, the preparation of three-dimensional hierarchical pore structures by a combination of laser-based templates and the self-organization process of mesostructured titania is presented. For this purpose macrostructured polymers produced by two-photon polymerization act as a template for the deposition of a mesostructured titania film from a solution containing an amphiphilic block copolymer by dip coating. A carefully applied calcination procedure removes both the macrotemplating polymer and the mesotemplating surfactant molecules so that a replica of the initial polymer structure with a hierarchical (macro- and meso-) pore system is obtained. In addition, the titania, which is amorphous after deposition, is transferred into crystalline anatase during calcination. Materials with dual pore systems are interesting for possible applications in catalysis and sorption, and three-dimensional crystalline structures from materials with high refraction index are attractive for photonic applications, for example as photonic crystals.

Keywords

Scan Transmission Electron Microscopy Titania Film Amorphous Titania Crystalline Anatase Scan Transmission Electron Microscopy Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Ostendorf A, Chichkov BN (2006) Photonics Spectra 40:72Google Scholar
  2. 2.
    Maruo S, Nakamura O, Kawata S (1997) Opt Lett 22:132CrossRefADSPubMedGoogle Scholar
  3. 3.
    Kawata S, Sun H, Tanaka T, Takada K (2001) Nature 412:697CrossRefADSPubMedGoogle Scholar
  4. 4.
    Cumpston BH, Ananthavel SP, Barlow S, Dyer DL, Ehrlich JE, Erskine LL, Heikal AA, Kuebler SM, Lee I-YS, McCord-Maughon D, Qin J, Röckel H, Rumi M, Wu X-L, Marder SR, Perry JW (1999) Nature 398:51CrossRefADSGoogle Scholar
  5. 5.
    Serbin J, Egbert A, Ostendorf A, Chichkov BN, Houbertz R, Domann G, Schulz J, Cronauer C, Fröhlich L, Popall M (2003) Opt Lett 28:301CrossRefADSPubMedGoogle Scholar
  6. 6.
    Deubel M, von Freymann G, Wegener M, Pereira S, Busch K, Soukoulis CM (2004) Nat Mater 3:444CrossRefADSPubMedGoogle Scholar
  7. 7.
    Wong S, Deubel M, Pérez-Willard F, John S, Ozin GA, Wegener M, von Freymann G (2006) Adv Mater 18:265CrossRefGoogle Scholar
  8. 8.
    Tétreault N, von Freymann G, Deubel M, Hermatschweiler M, Pérez-Willard F, John S, Wegener M, Ozin GA (2006) Adv Mater 18:457CrossRefGoogle Scholar
  9. 9.
    Narayan RJ, Jin C, Doraiswamy A, Mihailescu IN, Jelinek M, Ovsianikov A, Chichkov BN, Chrisey DB (2005) Adv Eng Mater 7:108Google Scholar
  10. 10.
    Serbin J, Ovsianikov A, Chichkov BN (2004) Opt Express 12:5221CrossRefADSPubMedGoogle Scholar
  11. 11.
    Kresge C, Leonowicz M, Roth W, Vartuli J, Beck J (1992) Nature 359:710CrossRefADSGoogle Scholar
  12. 12.
    Beck J, Vartuli J, Roth W, Leonowitz M, Kresge C, Schmitt K, Chu C, Olson D, Sheppard E, McCullen S, Higgins J, Schlenker J (1992) J Am Chem Soc 114:10834CrossRefGoogle Scholar
  13. 13.
    Yamada T, Zhou H, Uchida H, Honma I, Katsube T (2004) J Phys Chem B 108:13341CrossRefGoogle Scholar
  14. 14.
    Maschmeyer T, Rey F, Sankar G, Thomas JM (1995) Nature 378:159CrossRefADSGoogle Scholar
  15. 15.
    Yang P, Zhao D, Margolese DI, Chmelka B, Stucky G (1998) Nature 396:152CrossRefADSGoogle Scholar
  16. 16.
    Braun PV, Osenar P, Stupp SI (1996) Nature 380:325CrossRefADSGoogle Scholar
  17. 17.
    Zhao D, Luan Z, Kevan L (1997) Chem Commun 1009Google Scholar
  18. 18.
    Tian B, Liu X, Tu B, Yu C, Fan J, Wang L, Xie S, Stucky G, Zhao D (2003) Nat Mater 2:159CrossRefADSPubMedGoogle Scholar
  19. 19.
    Zhao D, Yang P, Melosh N, Feng J, Chmelka B, Stucky G (1998) Adv Mater 10:1380CrossRefGoogle Scholar
  20. 20.
    Grosso D, De AA, Soler-Ikkia G, Babonneau F, Sanchez C, Albouy P, Brunet-Bruneau A, Balkenende AR (2001) Adv Mater 13:1085CrossRefGoogle Scholar
  21. 21.
    Brinker CJ, Lu Y, Sellinger A, Fan H (1999) Adv Mater 11:579CrossRefGoogle Scholar
  22. 22.
    Grosso D, Cagnol F, De AA, Soler-Illia G, Crepaldi EL, Amenitsch H, Brunet-Bruneau A, Bourgeois A, Sanchez C (2004) Adv Funct Mater 14:309CrossRefGoogle Scholar
  23. 23.
    Wirnsberger G, Yang P, Scott BJ, Chmelka BF, Stucky GD (2001) Spectrochim Acta A 57:2049CrossRefGoogle Scholar
  24. 24.
    Turck C, Brandes G, Krueger I, Behrens P, Mojallal H, Lenarz T, Stieve M (2007) Acta Otolaryngol 127:801CrossRefPubMedGoogle Scholar
  25. 25.
    Heinroth F, Bremer I, Münzer S, Behrens P, Reinhardt C, Pasinger S, Ohrt C, Chichkov BN (2009) Microporous Mesoporous Mater 119:104Google Scholar
  26. 26.
    Hermatschweiler M, Ledermann A, Ozin GA, Wegener M, von Freymann G (2007) Adv Funct Mater 17:2273CrossRefGoogle Scholar
  27. 27.
    García-Santamaría F, Xu M, Lousse V, Fan S, Braun PV, Lewis JA (2007) Adv Mater 19:1567CrossRefGoogle Scholar
  28. 28.
    Grosso D, De AA, Soler-Ikkia G, Crepaldi EL, Cagnol F, Sinturel C, Bourgeois A, Brunet-Bruneau A, Amenitsch H, Albouy PA, Sanchez C (2003) Chem Mater 15:4662CrossRefGoogle Scholar
  29. 29.
    Chen W, Geng Y, Sun X, Cai Q, Li H, Weng D (2008) Microporous Mesoporous Mater 111:219CrossRefGoogle Scholar
  30. 30.
    Henrist C, Dewalque J, Mathis F, Cloots R (2009) Microporous Mesoporous Mater 117:292CrossRefGoogle Scholar
  31. 31.
    Baohua J, Shuhui W, Jiafang L, Min G (2007) J Appl Phys 102:96102CrossRefGoogle Scholar
  32. 32.
    Passinger S, Saifullah MS, Reinhardt C, Subramanian KR, Chichkov BN, Welland ME (2007) Adv Mater 19:1218CrossRefGoogle Scholar
  33. 33.
    Natl Bur Stand (U.S.) Monogr (1969) 25:82; JCPDS database no. 21-1272Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Falk Heinroth
    • 1
  • Simon Münzer
    • 1
  • Armin Feldhoff
    • 2
  • Sven Passinger
    • 3
  • Wei Cheng
    • 3
  • Carsten Reinhardt
    • 3
  • Boris Chichkov
    • 3
  • Peter Behrens
    • 1
  1. 1.Institut für Anorganische ChemieLeibniz Universität HannoverHannoverGermany
  2. 2.Institut für Physikalische Chemie und ElektrochemieLeibniz Universität HannoverHannoverGermany
  3. 3.Laser Zentrum Hannover e.V.HannoverGermany

Personalised recommendations