Advertisement

Journal of Materials Science

, Volume 44, Issue 10, pp 2459–2465 | Cite as

Quasi-static and dynamic piezoelectric d 33 coefficients of irradiation cross-linked polypropylene ferroelectrets

  • Xiaoqing Zhang
  • Xuewen Wang
  • Jinfeng Huang
  • Zhongfu Xia
Article

Abstract

Irradiation cross-linked polypropylene (IXPP) foams show high piezoelectric activity after proper hot-pressing treatment and corona charging. Quasi-static piezoelectric d 33 coefficients around 400 pC/N were measured by means of the direct piezoelectric effect. Dynamic values of the inverse piezoelectric d 33 coefficients, determined from the dielectric resonance spectra at 220 kHz, is about 68% of the quasi-static d 33 values. The difference between the quasi-static and the dynamic values of d 33 is probably due to the enhancement of Young’s modulus of IXPP with increasing frequency. The piezoelectric d 33 coefficients are slightly dependent on the applied pressure in the range up to 50 kPa. The d 33-values decrease by 70% when the samples are exposed to 90 °C for 1 day; and a pre-aging treatment improves the thermal stability of the d 33 coefficients.

Keywords

Dielectric Spectrum Electromechanical Coupling Factor Complex Capacitance Piezoelectric Activity Corona Charge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors are indebted to Prof. G. M. Sessler (Darmstadt University of Technology, Germany) for stimulating discussions and to Mr. Jianwei Zhu (Tongji University, China) for the metallization of the films. Work was supported by the Natural Science Foundation of China (No. 50873078) and the Shanghai Rising-Star Program (No. 07QA14056).

References

  1. 1.
    Bauer S, Gerhard-Multhaupt R, Sessler GM (2004) Phys Today 57(2):37CrossRefGoogle Scholar
  2. 2.
    Lindner M, Hoislbauer H, Schwödiauer R et al (2004) IEEE Trans Dielectr Electr Insul 11:255CrossRefGoogle Scholar
  3. 3.
    Bauer S (2006) IEEE Trans Dielectr Electr Insul 13:953Google Scholar
  4. 4.
    Wegener M, Bauer S (2005) ChemPhysChem 6:1014PubMedCrossRefGoogle Scholar
  5. 5.
    Zhang X, Sessler GM, Hillenbrand J (2007) J Electrostat 65:94CrossRefGoogle Scholar
  6. 6.
    Zhang X, Hillenbrand J, Sessler GM (2004) Appl Phys Lett 85:1226CrossRefADSGoogle Scholar
  7. 7.
    Paajanen M, Wegener M, Gerhard-Multhaupt R (2001) J Phys D Appl Phys 34:2482CrossRefADSGoogle Scholar
  8. 8.
    Zhang X, Hillenbrand J, Sessler GM (2004) J Phys D Appl Phys 37:2146CrossRefADSGoogle Scholar
  9. 9.
    Hillenbrand J, Zhang X, Zhang Y et al (2003) Annual report on IEEE conference on electrical insulation and dielectric phenomena. IEEE, New York, pp 40–43Google Scholar
  10. 10.
    Saarimäki E, Paajanen M, Savijärvi et al (2006) IEEE Trans Dielectr Electr Insul 13:963Google Scholar
  11. 11.
    Montanari GC, Fabiani D, Ciani F et al (2005) Annual report on IEEE conference on electrical insulation and dielectric phenomena. IEEE, New York, pp 552–556Google Scholar
  12. 12.
    Wegener M, Wirges W, Dietrich JP et al (2005) Proceedings of the 12th international symposium on electrets. Salvador, Bahia, Brazil, pp 28–30Google Scholar
  13. 13.
    Fang P, Wegener M, Wirges W et al (2007) Appl Phys Lett 90:192908CrossRefADSGoogle Scholar
  14. 14.
    Zhang X, Hillenbrand J, Sessler GM (2007) J Appl Phys 101:054114CrossRefADSGoogle Scholar
  15. 15.
    Altafim RAC, Basso HC, Concalves Neto L et al (2005) Annual report on IEEE conference on electrical insulation and dielectric phenomena. IEEE, New York, pp 669–672Google Scholar
  16. 16.
    Hu Z, von Seggern H (2006) J Appl Phys 99:024102CrossRefADSGoogle Scholar
  17. 17.
    Kressmann R (2001) J Acoust Soc Am 109:1412PubMedCrossRefADSGoogle Scholar
  18. 18.
    Hillenbrand J, Sessler GM (2004) J Acoust Soc Am 116:3267CrossRefADSGoogle Scholar
  19. 19.
    Zhang X, Huang J, Chen J et al (2007) Appl Phys Lett 91:182901CrossRefADSGoogle Scholar
  20. 20.
    Sessler GM, Hillenbrand J (1999) Appl Phys Lett 75:3405CrossRefADSGoogle Scholar
  21. 21.
    Hu Z, von Seggern H (2005) J Appl Phys 98:014108CrossRefADSGoogle Scholar
  22. 22.
    Hillenbrand J, Sessler GM (2000) IEEE Trans Dielectr Electr Insul 7:537CrossRefGoogle Scholar
  23. 23.
    Jonscher AK (1983) Dielectric relaxation in solids. Chelsea Dielectrics Press, LondonGoogle Scholar
  24. 24.
    Havriliak S, Havriliak SJ (1997) Dielectric and mechanical relaxation in materials. Hanser, MunichGoogle Scholar
  25. 25.
    IEEE Standard on Piezoelectricity (1987) ANSI/IEEE Std. 176-1987, pp 46–59Google Scholar
  26. 26.
    Jonscher AK (1999) J Phys D Appl Phys 32:R57CrossRefADSGoogle Scholar
  27. 27.
    Neugschwandtner GS, Schwödiauer R, Vieytes M et al (2000) Appl Phys Lett 77:3827CrossRefADSGoogle Scholar
  28. 28.
    Mellinger A (2003) IEEE Trans Dielectr Electr Insul 10:842CrossRefGoogle Scholar
  29. 29.
    Ohigashi H (1976) J Appl Phys 47:949CrossRefADSGoogle Scholar
  30. 30.
    Omote K, Ohigashi H, Koga K (1997) J Appl Phys 81:2760CrossRefADSGoogle Scholar
  31. 31.
    Neugschwandtner GS, Schwödiauer R, Bauer-Gogonea S et al (2001) J Appl Phys 89:4503CrossRefADSGoogle Scholar
  32. 32.
    Dansachmüller M, Schwödiauer R, Bauer S et al (2005) Appl Phys Lett 86:031910CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Xiaoqing Zhang
    • 1
  • Xuewen Wang
    • 1
  • Jinfeng Huang
    • 1
  • Zhongfu Xia
    • 1
  1. 1.Pohl Institute of Solid State PhysicsTongji UniversityShanghaiChina

Personalised recommendations