Advertisement

Journal of Materials Science

, Volume 44, Issue 8, pp 2101–2108 | Cite as

Processing and thermal stability of a Cfiber/SiCfiller/Si–C–Nmatrix composite: effect of oligomer vaporization and the surface oxide layer of SiC filler

  • Sea-Hoon Lee
  • Fritz Aldinger
Article

Abstract

The processing of carbon fiber-reinforced ceramic matrix composites (CMC) made by the precursor impregnation and pyrolysis (PIP) method was improved, and factors which deteriorate the thermal stability of the CMC were investigated. The processing time for cross-linking of a precursor polymer was substantially reduced by the application of a sealed metal container due to the suppression of the vaporization of oligomers. The strength of the as-fabricated CMC was 286 MPa and 77% of the original strength was retained after a heating at 1350 °C for 24 h in Ar. The reduction of the strength after the heating was due to the decomposition of SiO2 which remained at the surface of the SiC filler particles. The decomposition reaction induced deterioration of carbon fibers and the matrix of the CMC at high temperature.

Keywords

Pyrolysis Carbon Fiber Ceramic Matrix Composite Carbon Fiber Fabric Ceramic Yield 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Flegel HA (2001) In: Heinrich JG, Aldinger F (eds) Ceramic materials and components for engines. Wiley, Weinheim, p 3Google Scholar
  2. 2.
    Christin F (2001) In: Krenkel W, Naslain R, Schneider H (eds) High temperature ceramic matrix composites. Wiley, Weinheim, p 732Google Scholar
  3. 3.
    El-Hija HA, Krenkel W (2001) In: Krenkel W, Naslain R, Schneider H (eds) High temperature ceramic matrix composites. Wiley, Weinheim, p 846CrossRefGoogle Scholar
  4. 4.
    Luthra KL, Corman GS (2001) In: Krenkel W, Naslain R, Schneider H (eds) High temperature ceramic matrix composites. Wiley, Weinheim, p 744CrossRefGoogle Scholar
  5. 5.
    Baldus P, Jansen M, Sporn D (1999) Science 285(30):699PubMedCrossRefGoogle Scholar
  6. 6.
    Sugimoto M, Morita Y, Seguchi T, Okamura K (1999) In: Niihara K (ed) Key engineering materials, vol 164–165. Trans Tech Publication, Zuerich, p 11Google Scholar
  7. 7.
    Riedel R, Kienzle A, Ruwisch W, Bill J, Aldinger F (1996) Nature 382(6594):796CrossRefADSGoogle Scholar
  8. 8.
    Choong Kwet Yive NS, Corriu RJP, Leclercq D, Mutin PH, Vioux A (1992) Chem Mater 4(1):141CrossRefGoogle Scholar
  9. 9.
    Li YL, Kroke E, Riedel R, Fasel C, Gervais C, Babonneau F (2001) Appl Organomet Chem 15(10):820CrossRefGoogle Scholar
  10. 10.
    Tanaka T, Tamari N, Kondoh I, Iwasa M (1995) J Ceram Soc Jpn 103(1):1Google Scholar
  11. 11.
    Greil P (1995) J Am Ceram Soc 78(4):835CrossRefGoogle Scholar
  12. 12.
    Nakano K, Kamiya A, Nishino Y, Imura T, Chou TW (1995) J Am Ceram Soc 78(10):2811CrossRefGoogle Scholar
  13. 13.
    Tanaka T, Tamari N, Kondo I, Iwasa M (1998) Ceram Int 24(5):365CrossRefGoogle Scholar
  14. 14.
    Lee SH, Weinmann W, Aldinger F (2007) J Am Ceram Soc 90(8):2657CrossRefGoogle Scholar
  15. 15.
  16. 16.
    Technical reference from the producer. http://www.kioncorp.com/bulletins/general.html
  17. 17.
    Lee SH, Weinmann M, Aldinger F (2005) J Am Ceram Soc 88(11):3024CrossRefGoogle Scholar
  18. 18.
    Technical reference from the producer. http://www.torayca.com/techref/index.html
  19. 19.
    Bahloul D, Pereira M, Goursat P, Choong Kwet Yive NS, Corriu RJP (1993) J Am Ceram Soc 76(5):1156CrossRefGoogle Scholar
  20. 20.
    Kroke E, Li YL, Konetschny C, Lecomte E, Fasel C, Riedel R (2000) Mater Sci Eng 26(4–6):97Google Scholar
  21. 21.
    Seitz J, Bill J (1996) J Mater Sci Lett 15(5):391Google Scholar
  22. 22.
    Zheng G, Sano H, Uchiyama Y, Kobayashi K, Suzuki K, Cheng H (1998) J Ceram Soc Jpn 106(12):1155Google Scholar
  23. 23.
    Nechanicky MA, Chew KW, Sellinger A, Laine RM (2000) J Eur Ceram Soc 20(4):441CrossRefGoogle Scholar
  24. 24.
    Ziegler G, Richter I, Suttor D (1999) Compos part A 30(4):411CrossRefGoogle Scholar
  25. 25.
    Rothe B, Suttor D, Ziegler G (1999) In: Niihara K (ed) Key engineering materials, vol 164–165. Trans Tech Publication, Zuerich, p 103Google Scholar
  26. 26.
    Helmer T, Peterlik H, Kromp K (1995) J Am Ceram Soc 78(1):133CrossRefGoogle Scholar
  27. 27.
    Iwamoto Y, Voelger W, Kroke E, Riedel R (2001) J Am Ceram Soc 84(10):2170Google Scholar
  28. 28.
    Peng J (2002) Thermochemistry and constitution of precursor-derived Si–(B–)C–N ceramics, PhD Thesis, University of Stuttgart, StuttgartGoogle Scholar
  29. 29.
    Rak Z (2001) J Am Ceram Soc 84(10):2235CrossRefGoogle Scholar
  30. 30.
    Bibbo GS, Benson PM, Pantano CG (1991) J Mater Sci 26(18):5075. doi: 10.1007/BF00549894 CrossRefADSGoogle Scholar
  31. 31.
    Colombo P, Modesti M (1999) J Sol–Gel Sci Techol 14(1):103CrossRefGoogle Scholar
  32. 32.
    Wang L, Wada H, Allard LF (1992) J Mater Res 7(1):148CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Max-Planck-Institut für Metallforschung and Institut für Nichtmetallische Anorganische MaterialienUniversität StuttgartStuttgartGermany
  2. 2.Korea Institute of Materials Science (KIMS)ChangwonRepublic of Korea

Personalised recommendations