Skip to main content
Log in

Nanostructured physical gel of SBS block copolymer and Ag/DT/SBS nanocomposites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Thermoreversible physical gels of poly(styrene-b-butadiene-b-styrene) (SBS), formed by the dissolution of the block copolymer in a mid-block-selective solvent (THF), have been studied and characterized with particular attention to their morphology and rheological behavior. The effects of the addition of silver (Ag) nanoparticles to the SBS matrix, on the behavior of the physical gels, were also studied. The external surface of the Ag nanoparticles has been modified by using as surfactant material, dodecanethiol, in order to achieve their confinement in just one block of the SBS block copolymer matrix. The results of this study show that the gel stability is not affected by the presence of Ag nanoparticles. In fact, the micellar domains of the nanocomposite gel based on SBS block copolymer and Ag nanoparticles has been obtained and the physical gel behavior have been confirmed by rheological analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Whitesides GM (2005) Small 1:172

    Article  CAS  Google Scholar 

  2. Yin Y, Lu Y, Gates B, Xia Y (2001) J Am Chem Soc 123:8718

    Article  CAS  Google Scholar 

  3. Park C, Yoon J, Thomas EL (2003) Polymer 44:6725

    Article  CAS  Google Scholar 

  4. Whitesides GM, Grzybowski B (2002) Science 295:2418

    Article  CAS  Google Scholar 

  5. Nörenberg C, Castell MR (2007) Surf Sci 601:4438

    Article  Google Scholar 

  6. Lazzari M, Lopez-Quintela MA (2003) Adv Mater 15:1583

    Article  CAS  Google Scholar 

  7. Matsen MW, Bates FS (1997) J Polym Sci Part B Polym Phys 35:945

    Article  CAS  Google Scholar 

  8. Son SU, Jang Y, Yoon KY, Kang E, Hyeon T (2004) Nano Lett 4:1147

    Article  CAS  Google Scholar 

  9. Li M, Ober CK (2006) Mater Today 9:30

    Article  CAS  Google Scholar 

  10. Sato T, Watanabe H, Osaki K (2000) Macromolecules 331:686

    Google Scholar 

  11. Nijenhuis KT (1997) Adv Polym Sci 130:1

    Article  Google Scholar 

  12. Wedler W, Tang W, Winter HH, MacKnight WJ, Farris RJ (1995) Macromolecules 28:512

    Article  CAS  Google Scholar 

  13. Seitz ME, Wesley RB, Faber KT, Kenneth RS (2007) Macromolecules 40:1218

    Article  CAS  Google Scholar 

  14. Victorov A, Radke C, Prausnitz J (2005) J Mol Phys 103:1431

    Article  CAS  Google Scholar 

  15. Miller-Chou BA, Koenig JL (2003) Macromolecules 36:4851

    Article  CAS  Google Scholar 

  16. Ottone ML, Deiber JA (2005) Polymer 46:4928

    Article  CAS  Google Scholar 

  17. Enlow D, Rawal A, Kanapathipillai M, Schmidt-Rohr K, Mallepragada S, Lo C-T, Thiyagarajan P, Akinc M (2007) J Mater Chem 17:1570

    Article  CAS  Google Scholar 

  18. Erhardt R, Böker A, Zettl H, Kaya H, Pyckhout-Hintzen W, Krausch G, Abetz V, Müller AHE (2001) Macromolecules 34:1069

    Article  CAS  Google Scholar 

  19. Watanabe H, Sato T, Osaki K, Yao M-L, Yamagishi A (1997) Macromolecules 30:5877

    Article  CAS  Google Scholar 

  20. Watanabe H, Yao M-L, Sato T, Osaki K (1997) Macromolecules 30:5905

    Article  CAS  Google Scholar 

  21. Kleppinger R, Van Es M, Mischenko N, Koch MHJ, Reynaers H (1998) Macromolecules 31:5805

    Article  CAS  Google Scholar 

  22. Daniel C (2007) Macromol Symp 251:1

    Article  CAS  Google Scholar 

  23. Vega DA, Sebastian JM, Loo Y-L, Register RA (2001) J Polym Sci Part B Polym Phys 39:2183

    Article  CAS  Google Scholar 

  24. Kempe MD, Verduzco R, Scruggs NR, Kornfield JA (2006) Soft Matter 2:422

    Article  CAS  Google Scholar 

  25. He Y, Boswell PG, Bühlmann P, Lodge TP (2007) J Phys Chem B 111:4645

    Article  CAS  Google Scholar 

  26. Das C, Inkson NJ, Read DJ, Kelmanson MA, McLeish TCB (2006) J Rheol 50:207

    Article  CAS  Google Scholar 

  27. Tung S-H, Huang Y-E, Raghavan SR (2007) Langmuir 23:372

    Article  CAS  Google Scholar 

  28. Liu Z, Cattopadhyay S, Shaw MT, Hsiao BS (2004) J Polym Sci Part B Polym Phys 42:1496

    Article  CAS  Google Scholar 

  29. Lionetto F, Coluccia G, D’Antona V, Maffezzoli A (2007) Rheol Acta 46:601

    Article  CAS  Google Scholar 

  30. Durkee DA, Gomez ED, Ellsworth MW, Bell AT, Balsara NP (2007) Macromolecules 40:5103

    Article  CAS  Google Scholar 

  31. Hamley IW, Pople JA, Gleeson AJ, Komanschekb BU, Towns-Andrews E (1998) J Appl Cryst 31:881

    Article  CAS  Google Scholar 

  32. Paglicawan MA, Balasubramanian M, Kim JK (2007) Macromol Symp 249:601

    Article  Google Scholar 

  33. Van Krevelen DW (1990) Properties of polymers. Elsevier, Amsterdam

    Google Scholar 

  34. Peponi L, Tercjak A, Torre L, Kenny JM, Mondragon I (2008) Compos Sci Technol 68:1631

    Article  CAS  Google Scholar 

  35. Peponi L, Tercjak A, Torre L, Kenny JM, Mondragon I (2009) J Nanosci Nanotechnol 9:2128

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This study was performed within the framework of the European Network of Excellence NANOFUN-POLY.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josè M. Kenny.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peponi, L., Tercjak, A., Torre, L. et al. Nanostructured physical gel of SBS block copolymer and Ag/DT/SBS nanocomposites. J Mater Sci 44, 1287–1293 (2009). https://doi.org/10.1007/s10853-009-3277-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-3277-2

Keywords

Navigation