Skip to main content
Log in

Effect of additives on the structure characteristics, thermal stability, reducibility and catalytic activity of CeO2–ZrO2 solid solution for methane combustion

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

MyOx-modified CeO2–ZrO2 (M = Al, Ba, Cu, La, Nd, Pr, Si) solid solutions with the atomic ratio of Zr/Ce = 1 were prepared by the reverse microemulsion method, and the effect of different additives on the structure characteristics, thermal stability, reducibility, and catalytic activity of CeO2–ZrO2 solid solution for methane combustion were investigated. According to their different effects, MyOx can be classified into three groups. The first group includes SiO2 and Al2O3 which do not vary the crystalline phase of CeO2–ZrO2 solid solution but distort the crystal lattice obviously. They are the most effective additives for improving the surface area, thermal stability, and reducibility of CeO2–ZrO2, and they can also promote the catalytic activity of Pd/CeO2–ZrO2 for methane combustion. The second group includes La2O3, Pr2O3, and Nd2O3, which can also keep the same crystalline phase, distort the crystal lattice, and improve the surface area and thermal stability of the solid solution, but their effects are much weaker and they decrease the reducibility of the solid solution. The third group includes BaO and CuO, whose effects on the property of CeO2–ZrO2 are much different. BaO and CuO, especially CuO, can decrease the thermal stability, and reduction extent of CeO2–ZrO2. CuO-modified CeO2–ZrO2 calcined at 550 °C shows the comparable high activity for the methane combustion, but after being calcined at 900 °C, CuO-modified CeO2–ZrO2 would separate into three phases as CeO2, ZrO2, and CuO, resulting in the much lower activity for the methane catalytic combustion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ozawa M (1998) J Alloy Compd 275–277:886

    Article  Google Scholar 

  2. Gandhi HS, Shelef M (1987) Stud Surf Sci Catal 30:199

    Article  CAS  Google Scholar 

  3. Kim G (1982) Ind Eng Chem Pro Res Dev 21:267

    Article  CAS  Google Scholar 

  4. Suhonen S, Valden M, Hietikko M, Laitinen R, Savimäki A, Härkönen M (2001) Appl Catal A Gen 218:151

    Article  CAS  Google Scholar 

  5. Schulz H, Stark WJ, Maciejewski M, Pratsinis SE, Baiker A (2003) J Mater Chem 13:2979

    Article  CAS  Google Scholar 

  6. Fernández-García M, Martínez-Arias A, Guerrero-Ruiz A, Conesa JC, Soria J (2002) J Catal 211:326

    Article  Google Scholar 

  7. Chen M, Zhang P, Zheng X (2004) Catal Today 93–95:671

    Article  Google Scholar 

  8. Wang W, Lin P, Fu Y, Cao G (2002) Catal Lett 82:19

    Article  Google Scholar 

  9. Ikryannikova LN, Markaryan GL, Kaharlanov AN, Lunia EV (2003) Appl Surf Sci 207:100

    Article  CAS  Google Scholar 

  10. Choudhary TV, Banerjee S, Choudhary VR (2002) Appl Catal A Gen 234:1

    Article  CAS  Google Scholar 

  11. Zhang Y, Andersson S, Muhammed M (1995) Appl Catal B Environ 6:325

    Article  CAS  Google Scholar 

  12. Zamar F, Trovarelli A, Deleitenburg C, Dolcetti G (1995) J Chem Soc Chem Commun 9:965

    Article  Google Scholar 

  13. Wang X, Lu G, Guo Y, Wang Y, Guo Y (2005) Mater Chem Phys 90:225

    Article  CAS  Google Scholar 

  14. Horiuchi T, Chen L, Osaki T, Sugiyama T, Suzuki K, Mori T (1999) Catal Lett 58:89

    Article  CAS  Google Scholar 

  15. Horiuchi T, Osaki T, Sujiyama T, Suzuki K, Mori T (2001) J Non-Crystal Solids 291:187

    Article  CAS  Google Scholar 

  16. Hori CE, Permana H, Simon Ng KY, Brenner A, More K, Rahmoeller KM, Belton D (1998) Appl Catal B 16:105

    Article  CAS  Google Scholar 

  17. Campostrinil R, Ischial M, Armelao L (2004) J Therm Anal Calorim 78:657

    Article  Google Scholar 

  18. Wiench JW, Avadhut YS, Maity N, Bhaduri S, Lahiri GK, Pruski M, Ganapathy S (2007) J Phys Chem B 111:3877

    Article  CAS  Google Scholar 

  19. Sales JAA, Petrucelli GC, Oliveira FJVE, Airoldi C (2007) J Colloid Interface Sci 315:426

    Article  CAS  Google Scholar 

  20. Hu LH, Ji SF, Xiao TC, Guo CX, Wu PY, Nie PY (2007) J Phys Chem B 111:3599

    Article  CAS  Google Scholar 

  21. Choy JH, Yoon JB, Jung H, Park JH (2004) J Porous Mater 11:123

    Article  CAS  Google Scholar 

  22. Yuan Z, Liu S, Chen T, Wang J, Li H (1995) J Chem Soc Commun 9:973

    Article  Google Scholar 

  23. Vlaic G, Fornasiero P, Geremia S, Kaspar J, Graziani M (1997) J Catal 168:386

    Article  CAS  Google Scholar 

  24. Fraga MA, Soares de Souza E, Villain F, Appel LG (2004) Appl Catal A Gen 259:57

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported financially by the National Basic Research Program of China (2004CB719500), the National Natural Science Foundation of China (20601008), the Commission of Science and Technology of Shanghai Municipality (05QMX1415, 0452nm005), and Rare Earths Office of Shanghai Municipality (200503).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guanzhong Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Lu, G., Guo, Y. et al. Effect of additives on the structure characteristics, thermal stability, reducibility and catalytic activity of CeO2–ZrO2 solid solution for methane combustion. J Mater Sci 44, 1294–1301 (2009). https://doi.org/10.1007/s10853-009-3275-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-3275-4

Keywords

Navigation