Advertisement

Journal of Materials Science

, Volume 44, Issue 5, pp 1407–1411 | Cite as

Direct synthesis of carbon nanosheets by the solid-state pyrolysis of betaine

  • Athanasios B. Bourlinos
  • Theodore A. Steriotis
  • Radek Zboril
  • Vasilios Georgakilas
  • Athanasios Stubos
Letter

Carbon sheets of a few nanometers thick (nanosheets) define a peculiar class of carbon materials with unique surface-to-volume ratio, smooth surface morphologies and thin edges, flexibility and elasticity, high thermal and chemical stability, and lightness [1, 2]. In this respect, carbon nanosheets are promising candidates for hydrogen storage materials, sensors, catalyst supports, fillers, templates, and substrates for further functionalization and single graphene production [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]. In early studies, the particular carbon nanomaterials have been synthesized via radio-frequency or microwave plasma-enhanced chemical vapor deposition (CVD), expansion of graphite, chemical reduction of exfoliated graphite oxide, a solvothermal route, or catalytic growth [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]. However, these preparative methods suffer (depending on the case) from the following drawbacks: (i) low yield or/and concurrent formation...

Keywords

Betaine Graphite Oxide Individual Sheet Turbostratic Carbon Carbon Nanosheets 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was supported by the projects of the ministry of education of the Czech Republic (1M6198959201 and MSM6198959218). We also thank D. Jancik and M. Vujtek for their technical assistance in the microscopy studies.

References

  1. 1.
    Chung DDL (2002) J Mater Sci 37:1475. doi: 10.1023/A:1014915307738 CrossRefGoogle Scholar
  2. 2.
    Jang BZ, Zhamu A (2008) J Mater Sci 43:5092. doi: 10.1007/s10853-008-2755-2 CrossRefGoogle Scholar
  3. 3.
    Shioyama H (2001) J Mater Sci Lett 20:499CrossRefGoogle Scholar
  4. 4.
    Wang J, Zhu M, Outlaw RA, Zhao X, Manos DM, Holloway BC (2004) Carbon 42:2867CrossRefGoogle Scholar
  5. 5.
    Kuang Q, Xie S-Y, Jiang Z-Y, Zhang X-H, Xie Z-X, Huang R-B, Zheng L-S (2004) Carbon 42:1737CrossRefGoogle Scholar
  6. 6.
    Wu Y, Yang B, Zong B, Sun H, Shen Z, Feng Y (2004) J Mater Chem 14:469CrossRefGoogle Scholar
  7. 7.
    Zhao X, Outlaw RA, Wang JJ, Zhu MY, Smith GD, Holloway BC (2006) J Chem Phys 124:194704 (6 pp)PubMedCrossRefADSGoogle Scholar
  8. 8.
    Niyogi S, Bekyarova E, Itkis ME, McWilliams JL, Hamon MA, Haddon RC (2006) J Am Chem Soc 128:7720PubMedCrossRefGoogle Scholar
  9. 9.
    Qin Y, Eggers M, Staedler T, Jiang X (2007) Nanotechnology 18:345607 (4 pp)CrossRefGoogle Scholar
  10. 10.
    Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Carbon 45:1558CrossRefGoogle Scholar
  11. 11.
    Peng W, Wang Z, Yoshizawa N, Hatori H, Hirotsu T (2008) Chem Commun 4348Google Scholar
  12. 12.
    Zhu J (2008) Nat Nanotechnol 3:528PubMedCrossRefGoogle Scholar
  13. 13.
    Shang NG, Papakonstantinou P, McMullan M, Chu M, Stamboulis A, Potenza A, Dhesi SS, Marchetto H (2008) Adv Funct Mater 18:3506CrossRefGoogle Scholar
  14. 14.
    Zhou L, Lin J, Lin H, Chen G (2008) J Mater Sci 43:4886. doi: 10.1007/s10853-008-2710-2 CrossRefGoogle Scholar
  15. 15.
    Liu X, Fu D, Jia H, Xu B (2008) J Mater Sci 43:5014. doi: 10.1007/s10853-008-2659-1 CrossRefGoogle Scholar
  16. 16.
    Kalaitzidou K, Fukushima H, Askeland P, Drzal LT (2008) J Mater Sci 43:2895. doi: 10.1007/s10853-007-1876-3 CrossRefGoogle Scholar
  17. 17.
    Viertorinne M, Valkonen J, Pitkänen I, Mathlouthi M, Nurmi J (1999) J Mol Struct 477:23CrossRefGoogle Scholar
  18. 18.
    Suuronen J, Pitkänen I, Halttunen H, Moilanen R (2002) J Therm Anal Calorim 69:359CrossRefGoogle Scholar
  19. 19.
    Bourlinos AB, Gournis D, Petridis D, Szabó T, Szeri A, Dékány I (2003) Langmuir 19:6050CrossRefGoogle Scholar
  20. 20.
    Szabó T, Berkesi O, Forgó P, Josepovits K, Sanakis Y, Petridis D, Dékány I (2006) Chem Mater 18:2740CrossRefGoogle Scholar
  21. 21.
    Bourlinos AB, Steriotis TA, Karakassides M, Sanakis Y, Tzitzios V, Trapalis C, Kouvelos E, Stubos A (2007) Carbon 45:852CrossRefGoogle Scholar
  22. 22.
    Stoller MD, Park S, Zhu Y, An J, Ruoff RS (2008) Nano Lett 8:3498PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Athanasios B. Bourlinos
    • 1
  • Theodore A. Steriotis
    • 2
  • Radek Zboril
    • 3
  • Vasilios Georgakilas
    • 1
  • Athanasios Stubos
    • 4
  1. 1.Institute of Materials ScienceNCSR “Demokritos”AthensGreece
  2. 2.Institute of Physical ChemistryNCSR “Demokritos”AthensGreece
  3. 3.Department of Physical ChemistryPalacky UniversityOlomoucCzech Republic
  4. 4.Institute of Nuclear Technology and Radiation Protection, Environmental Research LaboratoryNCSR “Demokritos”AthensGreece

Personalised recommendations