Skip to main content
Log in

Stress-based model on work hardening and softening of materials at large strains: corrugation process of sheet

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this article, a stress-based model is proposed to investigate the strength evolution during severe plastic deformation (SPD) or large strains. In this model, the work hardening mechanisms are described by Frank-Read sources, while the cross-slip and climb processes are considered as the mechanisms for work softening phenomenon. Within all SPD processes, one of corrugation processes such as constrained groove pressing is chosen to assess the validity of the model predictions. The model predictions are in agreement with the earlier reports and the experimental results achieved in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Aretz H, Luce R, Wolske M et al (2000) Modell Simul Mater Sci Eng 8:881

    Article  Google Scholar 

  2. Estrin Y, Kim HS (2007) J Mater Sci 42:1512. doi:https://doi.org/10.1007/s10853-006-1282-2

    Article  CAS  Google Scholar 

  3. Kazeminezhad M, Hosseini E (2008) J Mater Sci 43:6081. doi:https://doi.org/10.1007/s10853-008-2953-y

    Article  CAS  Google Scholar 

  4. Haddadi H, Bouvier S, Banu M et al (2006) Int J Plast 22:2226

    Article  Google Scholar 

  5. Lopesa AB, Barlatb F, Gracioc JJ et al (2003) Int J Plast 19:1

    Article  Google Scholar 

  6. Roters F, Raabe D, Gottstin G (2000) Acta Mater 48:4181

    Article  CAS  Google Scholar 

  7. Goerdeler M, Crumbach M, Schneider M et al (2004) Mater Sci Eng A 387–389:266

    Article  CAS  Google Scholar 

  8. Prasad GVSS, Goerdeler M, Gottstein G (2005) Mater Sci Eng A 400–401:231

    Article  CAS  Google Scholar 

  9. Ma A, Roters F (2004) Acta Mater 52:3603

    Article  CAS  Google Scholar 

  10. Estrin Y, Toth LS, Molinari A et al (1998) Acta Mater 46:5509

    Article  CAS  Google Scholar 

  11. Estrin Y, Mecking H (1984) Acta Mater 32:57

    Article  Google Scholar 

  12. Mulders B, Zehetbauer M, Gottstein G et al (2002) Mater Sci Eng A 324:244

    Article  Google Scholar 

  13. Baik SC, Estrin Y, Kim HS et al (2003) Mater Sci Eng A 351:86

    Article  CAS  Google Scholar 

  14. Estrin Y, Molotnikov A, Davies CHJ et al (2008) J Mech Phys Solids 56:1186

    Article  CAS  Google Scholar 

  15. Richert M, Stuwe HP, Zehetbauer MJ et al (2003) Mater Sci Eng A 355:180

    Article  CAS  Google Scholar 

  16. Mckenzie PWJ, Lapovok R, Estrin Y (2007) Acta Mater 55:2985

    Article  CAS  Google Scholar 

  17. Toth LS, Molinari A, Estrin Y (2002) J Eng Mater Technol 124:71

    Article  Google Scholar 

  18. Goerdeler M, Gottstein G (2001) Mater Sci Eng A 309–310:377

    Article  Google Scholar 

  19. Zhilyaev AP, Swaminathan S, Gimazov AA et al (2008) J Mater Sci 43:7451. doi:https://doi.org/10.1007/s10853-008-2714-y

    Article  CAS  Google Scholar 

  20. Ivanisenko Y, Wunderlich RK, Valiev RZ et al (2003) Scr Mater 49:947

    Article  CAS  Google Scholar 

  21. Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Prog Mater Sci 45:103

    Article  CAS  Google Scholar 

  22. Chowdhury SG, Mondal A, Gubicza J et al (2008) Mater Sci Eng 490A:335

    Article  CAS  Google Scholar 

  23. Mishra A, Kad BK, Gregori F et al (2007) Acta Mater 55:13

    Article  CAS  Google Scholar 

  24. Shin DH, Park JJ, Kim YS et al (2002) Mater Sci Eng A 328:98

    Article  Google Scholar 

  25. Ungár T (2007) J Mater Sci 42:1584. doi:https://doi.org/10.1007/s10853-006-0696-1

    Article  CAS  Google Scholar 

  26. Sivaraman A, Chakkingal U (2008) J Mater Sci 43:7432. doi:https://doi.org/10.1007/s10853-008-2871-z

    Article  CAS  Google Scholar 

  27. Huang JY, Zhu YT, Jiang H et al (2001) Acta Mater 49:1497

    Article  CAS  Google Scholar 

  28. Xu C, Horita Z, Langdon TG (2008) J Mater Sci 43:7286. doi:https://doi.org/10.1007/s10853-008-2624-z

    Article  CAS  Google Scholar 

  29. Nedjad SH, Meidani H, Ahmadabadi MN (2008) Mater Sci Eng A 475:224

    Article  CAS  Google Scholar 

  30. Enikeev NA, Kimb HS, Alexandrov IV (2007) Mater Sci Eng A 460–461:619

    Article  CAS  Google Scholar 

  31. Mulyukov RR, Imayev RM, Nazarov AA (2008) J Mater Sci 43:7257. doi:https://doi.org/10.1007/s10853-008-2777-9

    Article  CAS  Google Scholar 

  32. Xia K, Wu X, Honma T et al (2007) J Mater Sci 42:1551. doi:https://doi.org/10.1007/s10853-006-0819-8

    Article  CAS  Google Scholar 

  33. Sakai G, Horita Z, Langdon TG (2005) Mater Sci Eng A 393:344

    Article  CAS  Google Scholar 

  34. Kamikawa N, Tsuji N, Minamino Y (2004) Sci Technol Adv Mater 5:163

    Article  CAS  Google Scholar 

  35. Saito Y, Tsuji N, Utsunomiya H et al (1998) Scr Mater 39:1221

    Article  CAS  Google Scholar 

  36. Lee JW, Park JJ (2002) J Mater Process Technol 130:208

    Article  Google Scholar 

  37. Peng K, Su L, Shaw LL et al (2007) Scr Mater 56:987

    Article  CAS  Google Scholar 

  38. Toth LS (2005) Comput Mater Sci 32:568

    Article  CAS  Google Scholar 

  39. Krishnaiah A, Chakkingal U, Venugopal P (2005) Mater Sci Eng A 410:337

    Article  CAS  Google Scholar 

  40. Les P, Zehetbauer MJ (1994) Key Eng Mater 97:335

    Google Scholar 

  41. Zehetbauer MJ (1993) Acta Mater 41:589

    Article  CAS  Google Scholar 

  42. Zehetbauer MJ, Stuwe HP, Vorhauer A et al (2003) Adv Eng Mater 5:330

    Article  CAS  Google Scholar 

  43. Mecking H, Kocks U (1981) Acta Mater 29:1865

    Article  CAS  Google Scholar 

  44. Wildsford DK (1999) Metall Mater Trans A 30:2391

    Article  Google Scholar 

  45. Lapovok R, Torre FHD, Sandlin J et al (2005) J Mech Phys Solids 53:729

    Article  CAS  Google Scholar 

  46. Humphreys FJ, Hatherly M (2004) Recrystallization and related annealing phenomena. Elsevier, Oxford

    Google Scholar 

  47. Nes E, Marthinsen K (2002) Mater Sci Eng A 322:176

    Article  Google Scholar 

  48. Peczak P (1995) Acta Metall Mater 43:1279

    Article  CAS  Google Scholar 

  49. Rezvanian O, Zikry MA, Rajendran AM (2006) Mech Mater 38:1159

    Article  Google Scholar 

Download references

Acknowledgement

The authors wish to thank the research board of Sharif University of Technology for the financial support and the provision of the research facilities used for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kazeminezhad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hosseini, E., Kazeminezhad, M. Stress-based model on work hardening and softening of materials at large strains: corrugation process of sheet. J Mater Sci 44, 1212–1218 (2009). https://doi.org/10.1007/s10853-009-3261-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-3261-x

Keywords

Navigation