Skip to main content
Log in

Electromagnetic wave absorption potential of SiC-based ceramic woven fabrics in the GHz range

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This article investigates the electromagnetic wave-absorbing properties of SiC-based ceramic woven fabrics. The electrical conductivity of ceramic woven fabrics was modified by heat treatment in air, resulting in oxidation, and the electromagnetic wave absorption potential of single- and double-layer ceramic woven fabrics were determined in the 17–40 GHz frequency range using the free-space method. The absorption potentials of ceramic woven fabrics of different chemical composition and weave were correlated with their material properties through X-ray diffraction, scanning electron microscopy, and electrical resistance measurement. The effect of the different arrangements of fabrics in multilayer forms, and how oxidation affects the electromagnetic wave absorption potential of the fabrics are discussed. Various double-layer combinations of SiC-based woven fabrics revealed promising potentials for both reduced reflection and transmission, resulting in ~90% absorption in the GHz range, which makes them powerful candidate materials for electromagnetic wave absorption applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Neelkanta PS (1995) Handbook of electromagnetic materials: monolithic and composite versions and their applications. CRC Press, Boca Raton

    Google Scholar 

  2. Feng YB, Qiu T, Shen CY, Li XY (2006) IEEE Trans Magn 42:363

    Article  CAS  Google Scholar 

  3. Li J, Huang J, Qin Y, Ma F (2007) Mater Sci Eng B 138:199

    Article  CAS  Google Scholar 

  4. Pinho MS, Gregori ML, Nunes RCR, Soares BG (2002) Eur Polym J 38:2321

    Article  CAS  Google Scholar 

  5. Singh P, Babbar VK, Razdan A, Srivastava SL, Puri RK (1999) Mater Sci Eng B 67:132

    Article  Google Scholar 

  6. Chin WS, Lee DG (2007) Compos Struct 77:457

    Article  Google Scholar 

  7. Oh J-H, Oh K-S, Kim C-G, Hong C-S (2004) Composites B 35:49

    Article  Google Scholar 

  8. Dishovsky N, Grigorova M (2000) Mater Res Bull 35:403

    Article  CAS  Google Scholar 

  9. Lee CY, Song HG, Jang KS, Oh EJ, Epstein AJ, Joo J (1999) Synth Met 102:1346

    Article  CAS  Google Scholar 

  10. Kim T, Chung D (2006) J Mater Eng Perform 15:295

    Article  CAS  Google Scholar 

  11. Shui XP, Chung DDL (2000) J Mater Sci 35:1773. doi:https://doi.org/10.1023/A:1004784720338

    Article  CAS  Google Scholar 

  12. Tellakula RA, Varadan VK, Shami TC, Mathur GN (2004) Smart Mater Struct 13:1040

    Article  CAS  Google Scholar 

  13. Hochet N, Berger MH, Bunsell AR (1997) J Microsc 185:243

    Article  CAS  Google Scholar 

  14. Kakimoto K, Shimoo T, Okamura K (1997) J Ceram Soc Jpn 105:504

    Article  CAS  Google Scholar 

  15. Kishimoto H, Katoh Y, Kohyama A (2002) J Nucl Mater 307:1130

    Article  Google Scholar 

  16. Kagawa Y, Imahashi Y, Iba H, Naganuma T, Matsumura K (2003) J Mater Sci Lett 22:159

    Article  CAS  Google Scholar 

  17. Kagawa Y, Matsumura K, Iba H, Imahashi Y (2007) J Mater Sci 42:1116. doi:https://doi.org/10.1007/10853s-006-1437-1

    Article  CAS  Google Scholar 

  18. Tyranno Fiber R Catalog (2001) Ube Industries Co., Ltd

  19. Matsumura K, Kagawa Y (2007) J Mater Sci 42:3251. doi:https://doi.org/10.1007/s10853-006-1413-9

    Article  CAS  Google Scholar 

  20. Seo IS, Chin WS, Lee DG (2004) Compos Struct 66:533

    Article  Google Scholar 

  21. Ghodgaonkar DK, Varadan VV, Varadan VK (1990) IEEE Trans Instrum Meas 39:387

    Article  CAS  Google Scholar 

  22. Shimoo T, Morisada Y, Okamura K (2002) J Mater Sci 37:4361. doi:https://doi.org/10.1023/A:1020608704120

    Article  CAS  Google Scholar 

  23. Duffrene L, Kieffer J (1998) J Phys Chem Solid 59:1025

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. F. Dericioglu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, E., Kagawa, Y. & Dericioglu, A.F. Electromagnetic wave absorption potential of SiC-based ceramic woven fabrics in the GHz range. J Mater Sci 44, 1172–1179 (2009). https://doi.org/10.1007/s10853-009-3257-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-3257-6

Keywords

Navigation