Skip to main content
Log in

Templated epitaxial coatings on magnesium aluminate spinel using the sol-gel method

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Polycrystalline magnesium aluminate (MgAl2O4) spinel has attractive properties for a range of applications including radomes, windows, and ballistic protection. A wet chemical approach using solutions of magnesium nitrate hexahydrate Mg(NO3)2 · 6H2O in 2-methoxy-ethanol (2-MOE) and aluminum nitrate nonahydrate (Al(NO3)3 · 9H2O) in ethylene glycol, was developed for spin coating on coarse-grain, polycrystalline spinel substrates. The coated substrates were subjected to isothermal heat treatments in the temperature range 1000–1400 °C, and subsequently examined using low voltage scanning electron microscopy, EBSD (electron back scattered diffraction), and transmission electron microscopy. The results showed that for annealing at 1200–1400 °C, the coatings were converted to crystalline MgAl2O4 which was epitaxial with the substrate grains. Heat treatment at lower temperatures, however, resulted in porous, fine-grained polycrystalline coatings. Thermal faceting of the grain surfaces was observed to occur. The observations suggest that faceting occurs preferentially on {100} and {110} planes. The morphology of the faceting was discussed in terms of the reported relative surface energy values for the low index planes in MgAl2O4 spinel. Finally, the influence of the coating process on spinel substrates which had been lightly abraded prior to spin coating was investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Dericioglu AF, Boccaccini AR, Dlouhy I, Kagawal K (2005) Mater Trans 46:996

    Article  CAS  Google Scholar 

  2. DiGiovanni AA, Fehrenbacher L, Roy DW (2005) Proc SPIE 5786:56

    Article  CAS  Google Scholar 

  3. Patterson M, Caiazza JE, Gilde G, Roy DW (2000) Ceram Eng Sci Proc 21:423

    Article  CAS  Google Scholar 

  4. Bayya SS, Chin GD, Villalobos G, Sanghera JS, Aggarwal ID (2005) Proc SPIE 5786:262

    Article  CAS  Google Scholar 

  5. Patterson M, DiGiovanni AA, Roy DW, Gilde G (2003) Ceram Eng Sci Proc 24:441

    Article  CAS  Google Scholar 

  6. Patel PJ, Gilde GA, Dehmer PG, McCauley JW (2000) Proc SPIE 4102:1

    Article  CAS  Google Scholar 

  7. Park H, Chan HM (2002) Thin Solid Films 422:135

    Article  CAS  Google Scholar 

  8. Messing GL, Trolier-McKinstry S, Sabolsky EM, Duran C, Kwon S, Brahmaroutu B, Park P, Yilmaz H, Rehrig PW, Eitel KB, Suvaci E, Seabaugh MM, Oh KS (2004) Crit Rev Solid State Mater Sci 29:45

    Article  CAS  Google Scholar 

  9. Rehrig PW, Messing GL, Trolier-McKinstry S (2000) J Am Ceram Soc 83:2654

    Article  CAS  Google Scholar 

  10. Khan A, Gorzkowski EP, Scotch AM, Leite ER, Chan HM, Harmer MP (2003) J Am Ceram Soc 86:2176

    Article  CAS  Google Scholar 

  11. Gorzkowski EP, Chan HM, Harmer MP (2006) J Am Ceram Soc 89:856

    Article  CAS  Google Scholar 

  12. Suvaci E, Seabaugh MM, Messing GL (1999) J Eur Ceram Soc 19:2465

    Article  CAS  Google Scholar 

  13. Brandon D, Chen D, Chan HM (1995) Mater Sci Eng A195:189

    Article  CAS  Google Scholar 

  14. Suzuki Y (2001) Annu Rev Mater Res 31:265

    Article  CAS  Google Scholar 

  15. Svegl F, Orel B, Hutchins MG, Kalcher K (1996) J Electrochem Soc 143:1532

    Article  CAS  Google Scholar 

  16. Tsuchiya T, Yamashiro H, Sei T, Inamura T (1992) J Mater Sci 27:3645. doi:https://doi.org/10.1007/BF01151845

    Article  CAS  Google Scholar 

  17. Liu F, Yang C, Ren T, Wang AZ, Yu J, Liu L (2007) J Magn Magn Mater 309:75

    Article  CAS  Google Scholar 

  18. Cheng F, Peng Z, Xu Z, Liao C, Yan C (1999) Thin Solid Films 339:109

    Article  CAS  Google Scholar 

  19. Sedlar M, Pust L (1995) Ceram Int 21:21

    Article  CAS  Google Scholar 

  20. Sathaye SD, Patil KR, Kulkarni SD, Bakre PP, Pradhan SD, Sarwade BD, Shintre SN (2003) J Mater Sci 38:29. doi:https://doi.org/10.1023/A:1021101529855

    Article  CAS  Google Scholar 

  21. Pasquier JF, Komarneni S, Roy R (1991) J Mater Sci 26:3797. doi:https://doi.org/10.1007/BF01184974

    Article  CAS  Google Scholar 

  22. Yanina SV, Carter CB (2002) Surf Sci 513:L402

    Article  CAS  Google Scholar 

  23. Susnitzky DW, Carter CB (1992) J Am Ceram Soc 75:2463

    Article  CAS  Google Scholar 

  24. Mishra RK, Thomas G (1977) J Appl Phys 48:4576

    Article  CAS  Google Scholar 

  25. Fang CM, Parker SC, de With G (2000) J Am Ceram Soc 83:2082

    Article  CAS  Google Scholar 

  26. Fang CM, Parker SC, de With G (2001) Key Eng Mater 206–213:543

    Article  Google Scholar 

  27. Stewart RL, Bradt RC (1995) In: Bradt RC et al (eds) Plastic deformation of ceramics. Plenum Press, New York, p 21

    Chapter  Google Scholar 

  28. Anantharaman MR, Reijne S, Jacobs JP, Brongersma HH, Smits RHH, Seshan K (1999) J Mater Sci 34:4279. doi:https://doi.org/10.1023/A:1004615222119

    Article  CAS  Google Scholar 

  29. Rice RW, Wu CC, McKinney KR (1996) J Mater Sci 31:1353. doi:https://doi.org/10.1007/BF00353117

    Article  CAS  Google Scholar 

  30. Rouse KD, Thomas MW, Willis BTM (1976) J Phys C Solid State Phys 9:L231

    Article  CAS  Google Scholar 

  31. Ziolkowski J (1996) J Solid State Chem 121:388

    Article  CAS  Google Scholar 

  32. Luders U, Sanchez F, Fontcuberta J (2005) Appl Phys A 81:103

    Article  Google Scholar 

  33. Huang MR, Lin CW, Lu HY (2001) Appl Surf Sci 177:103

    Article  CAS  Google Scholar 

  34. Ikeno S, Matsuda K, Matsuki T, Suzuki T, Endo N, Kawabata T, Uetani Y (2007) J Mater Sci 42:5680. doi:https://doi.org/10.1007/s10853-006-0538-1

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank I. Vesnovsky and J. Voyles (Technology Assessment and Transfer, Inc.) for supplying the spinel substrates. The funding support from ARL (Contract #W911NF-07-1-0614) and NSF (Contract #DMR-0705299) is also gratefully acknowledged. Partial support for E. Giorgi was provided by a Kraner Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helen M. Chan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Browne, D., Li, H., Giorgi, E. et al. Templated epitaxial coatings on magnesium aluminate spinel using the sol-gel method. J Mater Sci 44, 1180–1186 (2009). https://doi.org/10.1007/s10853-009-3250-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-3250-0

Keywords

Navigation