Skip to main content
Log in

Machinability, deformation, and cracks behavior of pressureless-sintered Al2O3/h-BN composites: role of weak boundary phases

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Al2O3/h–BN machinable composites were cost-effectively fabricated by pressureless sintering method. The machinability, deformation, and cracks behavior of the composites were investigated by drilling, Hertzian indentation, and Vickers indentation test, respectively. Through the observation of the microstructures in different scales by SEM, we analyzed the role of the weak boundary phases (WBP), including h-BN and pores, on the machining mechanism of the composites. The results showed that almost all of the WBP dispersed at the Al2O3 grain boundaries, which strongly elevate the machinability and deformability of the composites. During the drilling or Hertzian indentation test, a large number of microcracks formed firstly along the WBP; then these microcracks connected with each other causing a removal or macro-deformation of the composites. The Vickers indentation test result indicated that the weak interfaces and grain boundaries of WBP lead to a low microcrack toughness, whereas in macro-scale the crack toughness was improved because of the crack bridging and deflection of WBP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Grossman DG (1972) J Am Ceram Soc 55:446. doi:https://doi.org/10.1111/j.1151-2916.1972.tb11337.x

    Article  CAS  Google Scholar 

  2. Kusunose T, Sekino T, Choa YH, Niihara K (2002) J Am Ceram Soc 85:2678. doi:https://doi.org/10.1111/j.1151-2916.2002.tb00514.x

    Article  CAS  Google Scholar 

  3. Li YL, Qiao GJ, Jin ZH (2002) Mater Res Bull 37:1401. doi:https://doi.org/10.1016/S0025-5408(02)00786-9

    Article  CAS  Google Scholar 

  4. Li YL, Zhang JX, Qiao GJ, Jin ZH (2005) Mater Sci Eng A 397:35. doi:https://doi.org/10.1016/j.msea.2005.01.038

    Article  Google Scholar 

  5. Wang XD, Qiao GJ, Jin ZH (2004) J Am Ceram Soc 87:565. doi:https://doi.org/10.1111/j.1551-2916.2004.00565.x

    Article  CAS  Google Scholar 

  6. Baskaran S, Halloran JW (1993) J Am Ceram Soc 76:2217. doi:https://doi.org/10.1111/j.1151-2916.1993.tb07757.x

    Article  CAS  Google Scholar 

  7. Padture NP, Evans CJ, Hockin HKX, Lawn BR (1995) J Am Ceram Soc 78:215. doi:https://doi.org/10.1111/j.1151-2916.1995.tb08386.x

    Article  CAS  Google Scholar 

  8. Davis JB, Marshall DB, Housley RM, Morgan PED (1998) J Am Ceram Soc 81:2169. doi:https://doi.org/10.1111/j.1151-2916.1998.tb02602.x

    Article  CAS  Google Scholar 

  9. Suganuma K, Sasaki G, Fujita T, Okumura M, Niihara K (1993) J Mater Sci 28:1175. doi:https://doi.org/10.1007/BF01191949

    Article  CAS  Google Scholar 

  10. Kawai C, Yamakawa A (1997) J Am Ceram Soc 80:2705. doi:https://doi.org/10.1111/j.1151-2916.1997.tb03179.x

    Article  CAS  Google Scholar 

  11. Barsoum MW, El-Raghy T (1996) J Am Ceram Soc 79:1953. doi:https://doi.org/10.1111/j.1151-2916.1996.tb08018.x

    Article  CAS  Google Scholar 

  12. Shi ZQ, Wang JP, Qiao GJ, Jin ZH (2008) Mater Sci Eng A 492:29. doi:https://doi.org/10.1016/j.msea.2008.03.004

    Article  Google Scholar 

  13. Lawn BR, Padture NP, Cai HD, Guiberteau F (1994) Science 263:1114. doi:https://doi.org/10.1126/science.263.5150.1114

    Article  CAS  Google Scholar 

  14. Kusunose T, Sekino T, Choa YH, Niihara K (2002) J Am Ceram Soc 85:2689. doi:https://doi.org/10.1111/j.1151-2916.2002.tb00515.x

    Article  CAS  Google Scholar 

  15. Cai HD, Kalceff MAS, Lawn BR (1994) J Mater Res 9:762. doi:https://doi.org/10.1557/JMR.1994.0762

    Article  CAS  Google Scholar 

  16. Xu HHK, Jahanmir S (1995) J Am Ceram Soc 78:497. doi:https://doi.org/10.1111/j.1151-2916.1995.tb08831.x

    Article  CAS  Google Scholar 

  17. Padture NP (1994) J Am Ceram Soc 77:519. doi:https://doi.org/10.1111/j.1151-2916.1994.tb07024.x

    Article  CAS  Google Scholar 

  18. Fischer-Cripps AC, Lawn BR (1996) J Am Ceram Soc 79:2609. doi:https://doi.org/10.1111/j.1151-2916.1996.tb09023.x

    Article  CAS  Google Scholar 

  19. Latella BA, O’Connor BH, Padture NP, Lawn BR (1997) J Am Ceram Soc 80:1027. doi:https://doi.org/10.1111/j.1151-2916.1997.tb02940.x

    Article  CAS  Google Scholar 

  20. Lawn BR (1998) J Am Ceram Soc 81:1977. doi:https://doi.org/10.1111/j.1151-2916.1998.tb02580.x

    Article  CAS  Google Scholar 

  21. Zhang ZF, He G, Eckert J, Schultz L (2003) Phys Rev Lett 91:045505. doi:https://doi.org/10.1103/PhysRevLett.91.045505

    Article  CAS  Google Scholar 

  22. Yoon YS, Na SW, Lee J, Cho MW, Lee ES, Cho WS (2004) J Am Ceram Soc 87:1374. doi:https://doi.org/10.1111/j.1151-2916.2004.tb07740.x

    Article  CAS  Google Scholar 

  23. Cho WS, Cho MW, Lee JH, Munir ZA (2006) Mater Sci Eng A 418:61. doi:https://doi.org/10.1016/j.msea.2005.11.033

    Article  Google Scholar 

  24. Jiang T, Jin ZH, Yang JF, Qiao GJ (2008) Mater Sci Eng A 494:203. doi:https://doi.org/10.1016/j.msea.2008.04.047

    Article  Google Scholar 

Download references

Acknowledgement

This study was funded by National Natural Science Foundation of China (No. 50772086).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongqi Shi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, Z., Wang, J., Qiao, G. et al. Machinability, deformation, and cracks behavior of pressureless-sintered Al2O3/h-BN composites: role of weak boundary phases. J Mater Sci 44, 1580–1587 (2009). https://doi.org/10.1007/s10853-008-3242-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-3242-5

Keywords

Navigation