Skip to main content
Log in

Study the sintering behavior of nanocrystalline 3Y-TZP/430L stainless-steel composite layers for co-powder injection molding

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Recently, co-powder injection molding process (2C-PIM) has attained considerable interest to fabricate complex-shaped functional materials. The aim of this work is to study the sintering compatibility between nanocrystalline yttria-stabilized zirconia (3Y-TZP) and PIM grade 430L stainless steel (SS) powders, which is the utmost important step in the 2C-PIM process. To evaluate the mismatch strain development during the co-sintering, the isothermal and nonisothermal behaviors of the ceramic and metal powders were studied. Small bilayers of 3Y-TZP/430L were made by a powder metallurgy technique and the feasibility of simultaneous sintering and joining of the composite layer was examined. Electron probe micro-analyzer (EPMA) was used to study the joint interface. The shear strength of the bond was tested by a shear-punch instrument. It is shown that the amount of mismatch sintering shrinkage between the zirconia ceramic and SS powder during sintering can be as high as 9.7%. Meanwhile, sintering in vacuum induced lower mismatch strain compared to argon sintering. It is also shown that formation of a liquid phase by boron addition to the SS layer could assist bonding. The liquid phase accommodates the mismatch sintering shrinkage and ease materials transfer at the interface. EPMA analysis confirmed the interlayer diffusion of Zr, Fe, and Cr during sintering to form a ternary Zr–Fe–Cr oxide interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Kim KT, Kim HG, Jang HM (1998) Int J Eng Sci 36:1295

    Article  CAS  Google Scholar 

  2. Correia RN, Emiliano JV (1998) J Mater Sci 33:215. doi:https://doi.org/10.1023/A:1004378520526

    Article  CAS  Google Scholar 

  3. Mazaheri M, Simchi A, Golestani-Fard F (2008) J Eur Ceram Soc 28:2933

    Article  CAS  Google Scholar 

  4. Munoz MC, Gallego S, Beltran JI, Cerda J (2006) Surf Sci Rep 61:303

    Article  CAS  Google Scholar 

  5. Jadoon AK, Ralph B, Hornsby PR (2004) J Mater Proc Technol 152:257

    Article  CAS  Google Scholar 

  6. Singh M, Shpargel TP, Asthana R (2008) J Mater Sci 43:23. doi:https://doi.org/10.1007/s10853-007-1985-z

    Article  CAS  Google Scholar 

  7. Akselsen OM (1992) J Mater Sci 27:1989. doi:https://doi.org/10.1007/BF01117909

    Article  CAS  Google Scholar 

  8. Wang Z, Qian J, Cao J, Wang S, Wen T (2007) J Alloys Compd 437:264

    Article  CAS  Google Scholar 

  9. Harach DJ, Vecchio KS (2001) Met Mater Trans A 32:1493

    Article  Google Scholar 

  10. Yeo JG, Jung YG, Choi SC (1998) J Eur Ceram Soc 18:1281

    Article  CAS  Google Scholar 

  11. Biswas K, Upadhyaya GS (1998) Mater Des 19:231

    Article  CAS  Google Scholar 

  12. Yun JW, Lombardo SJ (2008) J Am Ceram Soc 91:1553

    Article  CAS  Google Scholar 

  13. Larker R, Wei LY, Loberg B, Olsson M, Johansson S (1994) J Mater Sci 29:4404. doi:https://doi.org/10.1007/BF00414229

    Article  CAS  Google Scholar 

  14. Zhang W, Xie J, Wang C (2004) Mater Sci Eng A 382:371

    Article  CAS  Google Scholar 

  15. Yen SK, Guo MJ, Zan HZ (2001) Biomaterials 22:125

    Article  CAS  Google Scholar 

  16. Hussain P, Isnin A (2001) J Mater Proc Technol 113:222

    Article  CAS  Google Scholar 

  17. Scheu C, Gao M, Oh SH, Dehm G, Klein S, Tomsia AP, Rühle M (2006) J Mater Sci 41:5161. doi:https://doi.org/10.1007/s10853-006-0073-0

    Article  CAS  Google Scholar 

  18. Li J, Xiao P (2004) J Eur Ceram Soc 24:2149

    Article  CAS  Google Scholar 

  19. Nemoto Y, Ueda K, Satou M, Hasegawa A, Katsunori K (1998) J Nucl Mater 258–263:1517

    Article  Google Scholar 

  20. Vila M, Martinez ML, Prieto C, Miranzo P, Osendi MI, Terry A, Vaughan G (2004) Powder Technol 148:60

    Article  CAS  Google Scholar 

  21. Yeo JG, Jung YG, Choi S-C (1998) Mater Lett 37:304

    Article  CAS  Google Scholar 

  22. Ozawa M, Kawagoe M, Suzuku S (2004) J Mater Sci 39:1337. doi:https://doi.org/10.1023/B:JMSC.0000013894.68512.a5

    Article  CAS  Google Scholar 

  23. Li JQ, Zeng XR, Tang JN, Xiao P (2003) J Eur Ceram Soc 23:1847

    Article  CAS  Google Scholar 

  24. Muller AC, Herbstritt D, Ivers-Tiffe E (2002) Solid State Ion 152–153:537

    Article  Google Scholar 

  25. Li J, Xiao P (2001) J Mater Sci 36:1383. doi:https://doi.org/10.1023/A:1017503503711

    Article  CAS  Google Scholar 

  26. Morsi K, Patel VV, Moon KS, Garay JE (2008) J Mater Sci 43:4050. doi:https://doi.org/10.1007/s10853-007-2225-2

    Article  CAS  Google Scholar 

  27. Vanmeensel K, Huang SG, Laptev A, Salehi SA, Swarnakar AK, Biest OV, Vleugels J (2008) J Mater Sci 43:6435. doi:https://doi.org/10.1007/s10853-008-2631-0

    Article  CAS  Google Scholar 

  28. Lee JG, Ma HA, Lee XL, Zheng YJ, Zuo GH, Jia X (2007) J Mater Sci 42:9460. doi:https://doi.org/10.1007/s10853-007-1934-x

    Article  CAS  Google Scholar 

  29. Bruck HA, Shabana YM, Xu B, Laskis JP (2007) J Mater Sci 42:7708. doi:https://doi.org/10.1007/s10853-007-1675-x

    Article  CAS  Google Scholar 

  30. Kodera Y, Toyofuku N, Yamasaki H, Ohyanagi M, Munir ZA (2008) J Mater Sci 43:6422. doi:https://doi.org/10.1007/s10853-008-2782-z

    Article  CAS  Google Scholar 

  31. Muroi M, Trotter G, McCormick PG, Kawahara M, Tokita M (2008) J Mater Sci 43:6376. doi:https://doi.org/10.1007/s10853-008-2559-4

    Article  CAS  Google Scholar 

  32. MacAskill IA, Bishop DP (2007) J Mater Sci 42:4149. doi:https://doi.org/10.1007/s10853-006-0893-y

    Article  CAS  Google Scholar 

  33. Ruh A, Dieckmann AM, Heldele R, Piotter V, Ruprecht R, Munzinger C, Fleischer J, Haußelt J (2008) Microsyst Technol 14:1805. doi:https://doi.org/10.1007/S00542-008-0646-8

    Article  CAS  Google Scholar 

  34. Stephenson DJ (2000) Ann CIRP 49/1:191

    Article  Google Scholar 

  35. Alcock JR, Logan PM, Stephenson DJ (1998) Surf Coat Technol 105:65

    Article  CAS  Google Scholar 

  36. Heaney DF, Suri P, German RM (2003) J Mater Sci 38:4869. doi:https://doi.org/10.1023/B:JMSC.0000004407.63082.f1

    Article  CAS  Google Scholar 

  37. Imgrund P, Rota A, Simchi A (2008) J Mater Proc Technol 200:259

    Article  CAS  Google Scholar 

  38. Imgrund P, Rota A, Petzoldt F, Simchi A (2007) Int J Adv Manuf Tech 33:176

    Article  Google Scholar 

  39. Simchi A, Rota A, Imgrund P (2006) Mater Sci Eng A 424:282

    Article  CAS  Google Scholar 

  40. Simchi A (2006) Met Mater Trans A 37:2549

    Article  Google Scholar 

  41. Firozdour V, Simchi A, Kokabi AH (2007) J Mater Sci 43:55. doi:https://doi.org/10.1007/s10853-007-2077-9

    Article  CAS  Google Scholar 

  42. Dourandish M, Simchi A, Godlinski D (2008) Mater Sci Eng A 472:338

    Article  CAS  Google Scholar 

  43. Feng J, Qiu M, Fan Y, Xu N (2007) J Membrane Sci 305:20

    Article  CAS  Google Scholar 

  44. Baumann A, Moritz T, Lenk R (2007) Keram Z 59(5):346

    CAS  Google Scholar 

  45. Baumann AA, Moritz T, Lenk R (2007) Proceedings of European Powder Metallurgy Congress and Exhibition (EURO PM2007), vol 2. Toulouse, France, October 2007, p 189

  46. Menon M, Chen IW (1999) J Am Ceram Soc 82:3422

    Article  CAS  Google Scholar 

  47. Cai PZ, Green DJ, Messing GL (1997) J Am Ceram Soc 80:1929

    Article  CAS  Google Scholar 

  48. Cai PZ, Green DJ, Messing GL (1997) J Am Ceram Soc 80:1940

    Article  CAS  Google Scholar 

  49. Liao CH, Jean JH, Hung YY (2008) J Am Ceram Soc 91:648

    Article  CAS  Google Scholar 

  50. Chang JC, Jean JH (2005) J Am Ceram Soc 88:1165

    Article  CAS  Google Scholar 

  51. Boonyongmaneerat Y, Schuh CA (2006) Met Mater Trans 37A:1435

    Article  CAS  Google Scholar 

  52. Delannay F, Pardoen D, Colin C (2005) Acta Mater 53:1655

    Article  CAS  Google Scholar 

  53. Kazior J, Nykiel M, Pieczonka T, Marcu Puscas T, Molinari A (2004) J Mater Proc Technol 157–158:712

    Article  CAS  Google Scholar 

  54. Özbek I, Konduk BA, Bindal C, Ucisik AH (2002) Vacuum 65:521

    Article  Google Scholar 

  55. Tonnes C (1992) Met Powder Rep 47:49

    Article  Google Scholar 

  56. Suri P, Heaney DF, German RM (2003) J Mater Sci 38:4875. doi:https://doi.org/10.1023/B:JMSC.0000004408.44675.f6

    Article  CAS  Google Scholar 

  57. Cullity BD (1978) Elements of X-ray diffraction, 2nd edn. Addison-Wesley Publishing Company Inc, Massachusetts

    Google Scholar 

  58. Theunissen GSAM, Winnubst AJA, Burggraaf AJ (1993) J Eur Ceram Soc 11:315

    Article  CAS  Google Scholar 

  59. Sobczak N, Sobczak J, Nowak R, Kudyba A, Darlak P, Mikulowski B, Wojiechowski A (2005) J Mater Sci 40:2547. doi:https://doi.org/10.1007/s10853-005-1990-z

    Article  CAS  Google Scholar 

  60. Simchi A, Petzoldt F, Hartwig T (2005) Proceedings of Euro PM2005 Conference and Congress, vol 2. EPMA, Shrewsbury, UK, p 357

  61. Sarkar K, Sund SE, Bose D, Yamanis J (1990) Math Comput Model 14:842

    Article  Google Scholar 

  62. Mazaheri M (2007) MS Thesis. Sharif University of Technology, Tehran

  63. Park JW, Mendez PF, Eagar TW (2005) Scr Mater 53:857

    Article  CAS  Google Scholar 

  64. Darby RJ, Kumar RV (2008) J Mater Sci 43:6567. doi:https://doi.org/10.1007/s10853-008-2983-5

    Article  CAS  Google Scholar 

  65. Qin CD, Derby B (1993) J Mater Sci 28:4366. doi:https://doi.org/10.1007/BF01154944

    Article  CAS  Google Scholar 

  66. Durov AV, Naidich YV, Kostyuk BD (2005) J Mater Sci 40:2173. doi:https://doi.org/10.1007/s10853-005-1928-5

    Article  CAS  Google Scholar 

  67. Teng LD, Wang FM, Lia WC (2000) Mater Sci Eng A293:130

    Article  CAS  Google Scholar 

  68. Ravi BG, Chaim R (2002) J Mater Sci 37:813. doi:https://doi.org/10.1023/A:1013804301381

    Article  CAS  Google Scholar 

  69. Nikolopoulos P, Ondracek G, Sotiropoulou D (1989) Ceram Int 15:201

    Article  CAS  Google Scholar 

  70. Zhu J, Kamiya A, Yamada T, Shi W, Naganuma K, Mukai K (2002) Mat Sci Eng A327:117

    Article  CAS  Google Scholar 

  71. Nakashima K, Matsumoto H, Mori K (2000) Acta Mater 48:4677

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Simchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dourandish, M., Simchi, A. Study the sintering behavior of nanocrystalline 3Y-TZP/430L stainless-steel composite layers for co-powder injection molding. J Mater Sci 44, 1264–1274 (2009). https://doi.org/10.1007/s10853-008-3241-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-3241-6

Keywords

Navigation