Skip to main content
Log in

The influence of combustion synthesis conditions on the α-Al2O3 powder preparation

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Fuel type and fuel/aluminium nitrate molar ratio proved to be of great importance during the preparation of α-Al2O3 powders. A stoichiometric amount of urea (U) enabled the formation of α-Al2O3 with a surface area of 24 m2/g directly from the combustion reaction. Monoethanolamine, triethylenetetramine, trishydroxymethylaminomethane, and triethanolamine yield amorphous powders. This behaviour was explained by the reaction mechanism, which requires the simultaneous decomposition of metal nitrate and fuel, as shown by thermal analysis. The use of 50% of the stoichiometric amount of U was unable to trigger a combustion reaction. The resulting powder was amorphous and had a surface area of 424 m2/g. A parabolic correlation between the surface area of combustion-synthesized powder and the U/aluminium nitrate molar ratio was found. Due to U consumption during the hydrolysis side-reaction, 50% of U excess above the stoichiometric ratio is required in order to maximize the exothermic effect of the combustion reaction. The use of U excess higher than 150% of the stoichiometric ratio not only increases the surface area of the powder, but also changes the phase composition: as the U excess increases the proportion of α-Al2O3 decreases and the amount of γ-Al2O3 increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Volceanov E, Volceanov A, Stoleriu Ş (2007) J Eur Ceram Soc 27:759

    Article  CAS  Google Scholar 

  2. Menecier S, Jarrige J, Labbe JC et al (2007) J Eur Ceram Soc 27:851

    Article  CAS  Google Scholar 

  3. Gitknecht D, Chevalier J, Garnier V et al (2007) J Eur Ceram Soc 27:1547

    Article  Google Scholar 

  4. Ul’yanova TM, Titova LV, Krut’ko NP (2002) Glass Ceram 59:279

    Article  Google Scholar 

  5. Badmos AY, Ivey DG (2001) J Mater Sci 36:4995. doi:https://doi.org/10.1023/A:1011885631876

    Article  CAS  Google Scholar 

  6. Kiiko VS, Makurin YN, Safronov AA et al (2003) Refract Ind Ceram 44:94

    Article  CAS  Google Scholar 

  7. Temuujin J, Jadambaa T, Mackenzie KJD et al (2000) Bull Mater Sci 23:301

    Article  CAS  Google Scholar 

  8. Martin ST, Yu J, Han J et al (2000) J Aerosol Sci 31:1283

    Article  CAS  Google Scholar 

  9. Hernandez T, Bautista MC (2005) J Eur Ceram Soc 25:663

    Article  CAS  Google Scholar 

  10. Janbey A, Pati RK, Tahir S et al (2001) J Eur Ceram Soc 21:2285

    Article  CAS  Google Scholar 

  11. Patil KC, Aruna ST, Mimani T (2002) Curr Opin Solid State Mater Sci 6:507

    Article  CAS  Google Scholar 

  12. Ianoş R (2009) J Mater Res. doi:https://doi.org/10.1557/JMR.2009.0019

    Article  Google Scholar 

  13. Ianoş R, Lazău I, Păcurariu C et al (2008) Eur J Inorg Chem 2008:931

    Article  Google Scholar 

  14. Bhaduri S, Zhou E, Bhaduri SB (1996) Nanostruct Mater 7:487

    Article  CAS  Google Scholar 

  15. Mimani T (2000) Resonance 5:50

    Article  CAS  Google Scholar 

  16. Mimani T, Patil KC (2001) Mater Phys Mech 4:134

    CAS  Google Scholar 

  17. Chen CC, Huang KT (2005) J Mater Res 20:424

    Article  CAS  Google Scholar 

  18. Ozuna O, Hirata GA, McKittrick J (2004) J Phys Condens Matter 16:2585

    Article  CAS  Google Scholar 

  19. Toniolo JC, Lima MD, Takimi AS et al (2005) Mater Res Bull 40:561

    Article  CAS  Google Scholar 

  20. Peng T, Liu X, Dai K et al (2006) Mater Res Bull 41:1683

    Google Scholar 

  21. Pathak LC, Singh TB, Das S et al (2002) Mater Lett 57:380

    Article  CAS  Google Scholar 

  22. Li J, Wu Y, Pan Y et al (2007) Ceram Int 33:361

    Article  CAS  Google Scholar 

  23. Speight JG (2005) Lange’s handbook of chemistry, 16th edn. McGraw-Hill, New York

    Google Scholar 

  24. Pacewska B, Keshr M (2002) Thermochim Acta 385:73

    Article  CAS  Google Scholar 

  25. Kakade MB, Ramanathan S, Ravindran PV (2003) J Alloys Compd 350:123

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Ianoş.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ianoş, R., Lazău, I. & Păcurariu, C. The influence of combustion synthesis conditions on the α-Al2O3 powder preparation. J Mater Sci 44, 1016–1023 (2009). https://doi.org/10.1007/s10853-008-3226-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-3226-5

Keywords

Navigation