Journal of Materials Science

, Volume 44, Issue 9, pp 2257–2263 | Cite as

The effect of ball milling on the melting behavior of Sn–Cu–Ag eutectic alloy

  • Bhupal Reddy
  • P. Bhattacharya
  • Bawa Singh
  • K. Chattopadhyay
Festschrift in honour of Prof T R Anantharaman on the occasion of his 80th birthday


Sn–Ag–Cu (SAC) solder alloys are the best Pb free alternative for electronic industry. Since their introduction, efforts are made to improve their efficacies by tuning the processing and composition to achieve lower melting point and better wettability. Nanostructured alloys with large boundary content are known to depress the melting points of metals and alloys. In this article we explore this possibility by processing prealloyed SAC alloys close to SAC305 composition (Sn-3wt%Ag-0.5wt%Cu) by mechanical milling which results in the formation of nanostructured alloys. Pulverisette ball mill (P7) and Vibratory ball mills are used to carry out the milling of the powders at room temperature and at lower temperatures (−104 °C), respectively. We report a relatively smaller depression of melting point ranging up to 5 °C with respect to original alloys. The minimum grain sizes achieved and the depression of melting point are similar for both room temperature and low-temperature processed samples. An attempt has been made to rationalize the observations in terms of the basic processes occurring during the milling.


Milling Mechanical Alloy Solder Alloy Milling Time Lead Free Solder 


  1. 1.
    Ehrhardt H, Weissmuller J, Wilde G (2001) Mater Res Soc Symp Proc B8.6.1:634Google Scholar
  2. 2.
    Chattopadhyay K, Goswami R (1997) Prog Mater Sci 42:287CrossRefGoogle Scholar
  3. 3.
    Goswami R, Chattopadhyay K (1993) Phil Mag Lett 68:215CrossRefADSGoogle Scholar
  4. 4.
    Goswami R, Chattopadhyay K (1995) Acta Metal Mater 43:2837CrossRefGoogle Scholar
  5. 5.
    Hwang JS (2001) Environment friendly electronics: lead free technology. Electrochemical Publications, IOM, Great BritainGoogle Scholar
  6. 6.
    Hwang JS (1994) In: Proceedings, surface mount international, p 405Google Scholar
  7. 7.
    Koch CC (1997) Nanostruct Mater 9:13CrossRefGoogle Scholar
  8. 8.
    Suryanarayana C (2005) Mechanical alloying and milling. Taylor and Francis Group, OxfordGoogle Scholar
  9. 9.
    Mohamed FA (2003) Acta Mater 51:4107CrossRefGoogle Scholar
  10. 10.
    Huang ML, Wu CML, Lai JKL, Wang FG (2000) J Mater Sci Mater Electron 11:57CrossRefGoogle Scholar
  11. 11.
    Lai HL, Duh JG (2003) J Electron Mater 32:215CrossRefADSGoogle Scholar
  12. 12.
    Kao ST, Duh JG (2004) J Electron Mater 33:1445CrossRefADSGoogle Scholar
  13. 13.
    Lee HY, Duh JG (2006) J Electron Mater 35:494CrossRefADSGoogle Scholar
  14. 14.
    Kao ST, Lin YC, Duh JG (2006) J Electron Mater 35:486CrossRefADSGoogle Scholar
  15. 15.
    Fecht HJ (1995) Nanostruct Mater 6:33CrossRefGoogle Scholar
  16. 16.
    Shen TD, Koch C (1996) Acta Mater 44:753CrossRefGoogle Scholar
  17. 17.
    Witkin DB, Lavernia EJ (2006) Prog Mater Sci 51:1CrossRefGoogle Scholar
  18. 18.
    Zhang X, Wang H, Narayan J, Koch CC (2001) Acta Mater 49:1319CrossRefGoogle Scholar
  19. 19.
    Joo YJ, Takemoto T (2002) Mater Lett 56:793CrossRefGoogle Scholar
  20. 20.
    Burgers WG, Groen LJ (1957) Dicuss Faraday Soc 23:183CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Bhupal Reddy
    • 1
  • P. Bhattacharya
    • 1
  • Bawa Singh
    • 2
  • K. Chattopadhyay
    • 1
  1. 1.Department of Materials EngineeringIndian Institute of ScienceBangaloreIndia
  2. 2.Cookson Electronics Assembly MaterialsJersey CityUSA

Personalised recommendations