Advertisement

Journal of Materials Science

, Volume 44, Issue 3, pp 849–854 | Cite as

Preparation and electrical conductivity of SiO2/polypyrrole nanocomposite

  • Qunwei Tang
  • Xiaoming Sun
  • Qinghua Li
  • Jianming Lin
  • Jihuai Wu
Article

Abstract

In the present study we have chemically polymerized silica/polypyrrole (SiO2/PPy) nanocomposite in the presence of sodium dodecyl benzene sulfate (SDBS) as dopant and iron chloride (FeCl3) as oxidant. The SiO2/PPy nanocomposite presents an electrical conductivity of 32.41 S cm−1 and percolation threshold of 20 wt%. The resulting SiO2/PPy nanocomposites have been extensively characterized in terms of their molecular structure, particle size, morphology, stability, and electroactivity. These SiO2/PPy particles have a rather polydisperse morphology. The effects of synthesis parameters such as oxidant, PPy, SDBS, reaction temperature and time, on the electrical conductivity of the nanocomposite have been detailedly optimized. And the conducting nanocomposite presented a good environmental stability.

Keywords

Pyrrole LiClO4 Acetonitrile Solution SiO2 Particle Inorganic Oxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors thank for jointly support by the National Natural Science Foundation of China (No. 50572030), the Specialized Project of Fujian Province (Nos. 2005HZ01-4, 2007HZ0001-3), the Key Project of Chinese Ministry of Education.(No. 206074), and Specialized Research Fund for the Doctoral Program of Chinese Higher Education (No. 20060385001).

References

  1. 1.
    Gangopadhyay R, De A (2000) Chem Mater 12:608CrossRefGoogle Scholar
  2. 2.
    Liu Y, Chu Y, Yang L (2006) Mater Chem Phys 98:304CrossRefADSGoogle Scholar
  3. 3.
    Kang TS, Lee SW, Joo J (2005) Synth Met 153:61CrossRefGoogle Scholar
  4. 4.
    Liu L, Zhao CJ, Zhao YM (2005) Eur Polym J 41:2117CrossRefMathSciNetGoogle Scholar
  5. 5.
    Mabrook MF, Pearson C, Petty MC (2006) Sensor Actuat B 115:547CrossRefGoogle Scholar
  6. 6.
    Liu YC, Lee HT, Yang SJ (2006) Electrochim Acta 51:3441CrossRefGoogle Scholar
  7. 7.
    Armes SP, Aldissi M, Agnew SF (1989) Synth Met 28:837CrossRefGoogle Scholar
  8. 8.
    Maeda S, Armes SP (1995) Synth Met 69:499CrossRefGoogle Scholar
  9. 9.
    Radhakrishnan S, Deshpande SD (2001) Mater Lett 48:144CrossRefGoogle Scholar
  10. 10.
    Erlandsson R, Inganas O, Lundstrom I (1985) Synth Met 10:303CrossRefGoogle Scholar
  11. 11.
    Audebert P, Aldebert P, Pineri M (1989) Synth Met 32:1CrossRefGoogle Scholar
  12. 12.
    Bhattacharya A, De A (1996) Prog Solid State Chem 24:141CrossRefGoogle Scholar
  13. 13.
    Shen Y, Wan M (1998) Synth Met 96:127CrossRefGoogle Scholar
  14. 14.
    Partch R, Gangolli SG, Matijevic E, Cai W, Arajs S (1991) J Colloid Interface Sci 144:27CrossRefGoogle Scholar
  15. 15.
    Mehrotra V, Keddie JL, Miller JM, Giannelis EP (1991) J Non-Cryst Solids 136:97CrossRefADSGoogle Scholar
  16. 16.
    Yoneyama H, Shoji Y (1990) J Electrochem Soc 137:3826CrossRefGoogle Scholar
  17. 17.
    Liu C, Maruyama T, Yamamoto T (1993) Polym J 25:363CrossRefGoogle Scholar
  18. 18.
    Han G, Yuan J, Shi G (2005) Thin Solid Films 474:64CrossRefADSGoogle Scholar
  19. 19.
    Ferrer AN, Kaempgen M, Skakalova V (2004) Diam Relat Mater 13:256CrossRefGoogle Scholar
  20. 20.
    Mravcakova M, Boukerma K, Omastová M (2006) Mater Sci Eng C 26:306CrossRefGoogle Scholar
  21. 21.
    Boukerma K, Piquemal JY, Chehimi MM (2006) Polymer 47:569CrossRefGoogle Scholar
  22. 22.
    Trueba M, Trasatti SP, Trasatti S (2006) Mater Chem Phys 98:165CrossRefGoogle Scholar
  23. 23.
    Tandon RP, Tripathy MR, Arora AK (2006) Sensor Actuat B 114:768CrossRefGoogle Scholar
  24. 24.
    Papathanassiou AN, Grammatikakis J, Sakellis I (2005) Synth Met 150:145CrossRefGoogle Scholar
  25. 25.
    Nakayama M, Yano J, Nakaoka K (2003) Synth Met 138:419CrossRefGoogle Scholar
  26. 26.
    Parvatikar N, Jain S, Khasim S (2006) Sensor Actuat B 114:599CrossRefGoogle Scholar
  27. 27.
    Maeda S, Armes SP (1993) J Colloid Interface Sci 159:257CrossRefGoogle Scholar
  28. 28.
    Saito Y, Kubo W, Kitamura T et al (2004) J Photochem Photobiol A 164:153CrossRefGoogle Scholar
  29. 29.
    Biallozor S, Kupniewska A (2000) Electrochem Commun 2:480CrossRefGoogle Scholar
  30. 30.
    Hauch A, Georg A (2001) Electrochim Acta 46:3457CrossRefGoogle Scholar
  31. 31.
    Carrasco PM, Grande HJ, Cortazar M (2006) Synth Met 156:420CrossRefGoogle Scholar
  32. 32.
    Shekhar S, Prasad V, Subramanyam SV (2006) Carbon 44:334CrossRefGoogle Scholar
  33. 33.
    Li JR, Xu JR, Zhang MQ (2003) Carbon 41:2353CrossRefGoogle Scholar
  34. 34.
    Emmerich FG, de Sousa JC, Torriani IL et al (1987) Carbon 25:417CrossRefGoogle Scholar
  35. 35.
    Malmonge LF, Mattoso LHC (1995) Polymer 36:245CrossRefGoogle Scholar
  36. 36.
    Ghosh P, Chakrabarti A (2000) Eur Polym J 36:1043CrossRefGoogle Scholar
  37. 37.
    Song MK, Kim YT, Kim BS (2004) Synth Met 141:315CrossRefGoogle Scholar
  38. 38.
    Yan H, Toshima N (1995) Synth Met 69:151CrossRefGoogle Scholar
  39. 39.
    Cao Y, Andreatta A, Heeger AJ et al (1989) Polymer 30:2305CrossRefGoogle Scholar
  40. 40.
    Geng YH, Sun ZC, Li J (1999) Polymer 40:5723CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Qunwei Tang
    • 1
  • Xiaoming Sun
    • 1
  • Qinghua Li
    • 1
  • Jianming Lin
    • 1
  • Jihuai Wu
    • 1
  1. 1.The Key Laboratory for Functional Materials of Fujian Higher Education Institute of Material Physical ChemistryHuaqiao UniversityQuanzhouChina

Personalised recommendations