Skip to main content
Log in

Characterisation of bauxite and seawater neutralised bauxite residue using XRD and vibrational spectroscopic techniques

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Bauxite refinery residues are derived from the Bayer process by the digestion of crushed bauxite in concentrated caustic at elevated temperatures. Chemically, it comprises, in varying amounts (depending upon the composition of the starting bauxite), oxides of iron and titanium, residual alumina, sodalite, silica, and minor quantities of other metal oxides. Bauxite residues are being neutralised by seawater in recent years to reduce the alkalinity in bauxite residue, through the precipitation of hydrotalcite-like compounds and some other Mg, Ca, and Al hydroxide and carbonate minerals. A combination of X-ray diffraction (XRD) and vibrational spectroscopy techniques, including mid-infrared (IR), Raman, near-infrared (NIR), and UV–Visible, have been used to characterise bauxite residue and seawater neutralised bauxite residue. The ferric (Fe3+) ions within bauxite residue can be identified by their characteristic NIR bands, where ferric ions produce two strong absorption bands at 25,000 and 14,300 cm−1. The presence of adsorbed carbonate and hydroxide anions can be identified at around 5,200 and 7,000 cm−1, respectively, attributed to the 2nd overtone of the 1st fundamental overtones observed in the mid-IR spectra. The complex bands in the Raman and mid-IR spectra around 3,500 cm−1 are assigned to the OH-stretching vibrations of the various oxides present in bauxite residue, and water. The combination of carbonate and hydroxyl units and their fundamental overtones give rise to many of the features of the NIR spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hind AR, Bhargava SK, Grocott SC (1999) Colloids Surf A 146:359

    Article  CAS  Google Scholar 

  2. Jamialahmadi M, Muller-Steinhagen H (1998) JOM 50:44

    CAS  Google Scholar 

  3. Chvedov D, Ostap S, Le T (2001) Colloids Surf A 182:131

    Article  CAS  Google Scholar 

  4. Menzies NW, Fulton IM, Morrell WJ (2004) J Environ Qual 33:1877

    Article  CAS  Google Scholar 

  5. Glenister DJ, Thornberg MR (1985) Chemica 85:100

    Google Scholar 

  6. Diaz B, Joiret S, Keddam M, Novoa XR, Perez MC, Takenouti H (2004) Electrochem Methods Corros Res 49:3039

    CAS  Google Scholar 

  7. Santona L, Castaldi P, Melis P (2006) J Hazard Mater 136:324

    Article  CAS  Google Scholar 

  8. Hanahan C, McConchie D, Pohl J, Creelman R, Clark M, Stocksiek C (2004) Environ Eng Sci 21:125

    Article  CAS  Google Scholar 

  9. McConchie D, Clark M, Hanahan C, Davies-McConchie F (2000) In: Proc 3rd Queensland environmental conference, Brisbane, Queensland, Australia, 2000, p 201

  10. Sherman DM, Waite TD (1985) Am Mineral 70:1262

    CAS  Google Scholar 

  11. Palmer SJ, Frost RL, Godwin A, Nguyen T (2008) J Raman Spectrosc 39:395

    Article  CAS  Google Scholar 

  12. Kloprogge JT, Wharton D, Hickey L, Frost RL (2002) Am Mineral 87:623

    Article  CAS  Google Scholar 

  13. Castaldi P, Silvetti M, Santone L, Enzo S, Melis P (2008) Clays Clay Miner 56:461

    Article  CAS  Google Scholar 

  14. Porto SPS, Krishnan RS (1967) J Chem Phys 47:1009

    Article  CAS  Google Scholar 

  15. Hart TR, Adams SB, Tempkin H (1990) Phys Rev 41:7822

    Article  Google Scholar 

  16. Murad E (1997) Am Mineral 82:203

    Article  CAS  Google Scholar 

  17. Downs RT (2006) ‘The RRUFF project: an integrated study of the chemistry, crystallography, Raman and infrared spectroscopy of minerals. https://doi.org/rruff.info/. Accessed 20 Nov 2006

  18. Hermeler G, Buhl JC, Hoffmann W (1991) Catal Today 8:415

    Article  CAS  Google Scholar 

  19. Farmer VC (1974) The Infrared spectra of minerals. Mineralogical Society, London

    Book  Google Scholar 

  20. Frost RL, Kloprogge JT, Russell SC, Szetu J (1999) Appl Spectrosc 53:423

    Article  CAS  Google Scholar 

  21. Marel HW, Beutelspacher H (1976) Atlas of infrared spectroscopy of clay minerals and their admixtures. Elsevier Scientific Pub. Co, New York

    Google Scholar 

  22. Rochester CH, Topham SA (1979) J Chem Soc Faraday Trans 75:1073

    Article  CAS  Google Scholar 

  23. Gadsden JA (1975) Infrared spectra of minerals and related inorganic compounds. Butterworths, London

    Google Scholar 

  24. Hunt GR, Ashley RP (1979) Econ Geol 74:1613

    Article  CAS  Google Scholar 

  25. Townsend TE (1987) J Geophys Res 92:1441

    Article  CAS  Google Scholar 

  26. Marfunin A (1979) Physics of minerals and inorganic materials: an introduction. Springer-Verlag, New York

    Book  Google Scholar 

  27. Rossman GR (1975) Am Mineral 60:698

    CAS  Google Scholar 

  28. Rossman GR (1976) Am Mineral 61:398

    CAS  Google Scholar 

  29. Tanabe Y, Sugano S (1954) J Phys Soc Jpn 9:753

    Article  CAS  Google Scholar 

  30. Reddy BJ, Frost RL (2007) J Near Infrared Spectrosc 15:115

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial and infrastructure support of the Queensland Research and Development Centre (QRDC-RioTintoAlcan) and the Queensland University of Technology Inorganic Materials Research Program of the School of Physical and Chemical Sciences is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ray L. Frost.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palmer, S.J., Frost, R.L. Characterisation of bauxite and seawater neutralised bauxite residue using XRD and vibrational spectroscopic techniques. J Mater Sci 44, 55–63 (2009). https://doi.org/10.1007/s10853-008-3123-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-3123-y

Keywords

Navigation