Skip to main content
Log in

Fluidity and microstructure of an Al–10% B4C composite

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The fluidity evolution of an Al–10 vol.% B4C experimental composite during long holding periods has been investigated by using a vacuum fluidity test. It was found that the fluidity of the composite melt decreased with the increase of the holding time. The microstructure of the fluidity samples was examined by optical metallography, quantitative image analysis, and electron microscopy. Two secondary reaction-induced phases were identified and the volume fraction changes of the solid phases during the holding periods were quantified. The relationship between the fluidity, volume fraction, and surface area of solid phase particles was established. In addition, the particle distribution along the entire length was examined in the fluidity samples. The mechanism of the particle redistribution during flow and solidification is presently discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Lloyd DJ (1997) In: Mallick PK (ed) Composites engineering handbook. Marcel Dekker, Inc, New York, p 631

    Google Scholar 

  2. Chen X-G (2006) In: Gupta N, Hunt WH (eds) Proceedings of TMS 2006, symposium on solidification processing of metal matrix composites, San Antonio, USA, March 2006, p 343

  3. Flemings MC (1974) Solidification processing. McGraw-Hill Book Company, New York, p 219

    Google Scholar 

  4. Campbell J (1999) Casting. Butterworth Heinemanth, Oxford, p 75

    Google Scholar 

  5. Yarandi FM, Rohatgi PK, Ray S (1993) J Mater Eng Perform 2:359

    Article  CAS  Google Scholar 

  6. Rohatgi P, Asthana R (2001) JOM 53:9

    Article  CAS  Google Scholar 

  7. Surappa MK, Rohatgi PK (1981) Metal Mater Trans B 12B:327

    Article  CAS  Google Scholar 

  8. Ravi VA, Frydrych DJ, Nagelberg AS (1994) AFS Trans 102:891

    CAS  Google Scholar 

  9. Kolsgaard A, Brusethaug S (1994) Mater Sci Tech 10:545

    Article  CAS  Google Scholar 

  10. Ferguson J, Kemblowski Z (1991) Applied fluid rheology. Elsevier, London, p 199

    Google Scholar 

  11. Gourlay C, Laukli H, Dahle A (2004) Metal Mater Trans A 35A:2881

    Article  CAS  Google Scholar 

  12. Laukli H, Lohne O, Arnberg L (2005) In: Tiryakioglu M, Crepeau PN (eds) Proceedings of TMS 2005, symposium on shape casting, San Francisco, USA, February 2005, p 263

  13. Sannes S, Westengen H (1998) In: Mordike BL, Kainer KU (eds) Proceedings of magnesium alloys and their application, Wolfsburg, Germany, April 1998, p 223

  14. Laukli H, Gourlay C, Dahle A, Lohne O (2005) Mater Sci Eng A 413–414:92

    Article  Google Scholar 

  15. Zhang Z, Chen X-G, Charette A (2007) J Mater Sci 42:7354. doi:https://doi.org/10.1007/s10853-007-1554-5

    Article  CAS  Google Scholar 

  16. Dahle AK, St John DH (1999) Acta Mater 47:31

    Article  CAS  Google Scholar 

  17. Chen X-G (2004) In: Proceedings of 14th international symposium on the packaging and transportation of radioactive materials, Berlin, Germany, 2004

  18. Chen X-G (2005) In: Schlesinger ME (eds) EPD Congress 2005. TMS, San Francisco, USA, p 101

  19. Viala JC, Bouix J, Gonzalez G, Esnouf C (1997) J Mater Sci 32:4559. doi:https://doi.org/10.1023/A:1018625402103

    Article  CAS  Google Scholar 

  20. Kennedy AR (2002) J Mater Sci 37:317. doi:https://doi.org/10.1023/A:1013600328599

    Article  CAS  Google Scholar 

  21. Pyzik AJ, Beaman DR (1995) J Am Ceram Soc 78:305

    Article  CAS  Google Scholar 

  22. Shorowordi KM, Laoui T, Haseeb ASMA, Celis JP, Froyen L (2003) J Mater Process Tech 142:738

    Article  CAS  Google Scholar 

  23. Zhang Z, Chen X-G, Charette A, Ghomashchi R (2005) In: Martin J-P (ed) Proceedings of light metals, Calgary, Canada, August 2005, p 447

  24. Viala JC (2002) In: Drew RAL, Pugh MD, Brochu M (eds) Proceedings of the international symposium on metal/ceramic interactions, Montreal, Canada, August 2002, p 63

  25. Gokhale AM (1990) In: Voort G (ed) ASM handbook, vol 9. The Materials Information Society, OH, p 431

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support of the Natural Sciences and Engineering Research Council of Canada (NSERC) and Rio Tinto Alcan Inc., Arvida Research and Development Centre (ARDC). They are also grateful to A. Simard, M. Bouchard, and G. Lemire of UQAC, Dr M. Choquette of Université Laval, and P. Plamondon and J.-P. Masse of l’École Polytechnique de Montréal for their assistance in the microstructural examination.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Z., Chen, XG. & Charette, A. Fluidity and microstructure of an Al–10% B4C composite. J Mater Sci 44, 492–501 (2009). https://doi.org/10.1007/s10853-008-3097-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-3097-9

Keywords

Navigation