Skip to main content
Log in

Investigations of a controllable nanoscale coating on natural fiber system: effects of charge and bonding on the mechanical properties of textiles

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A novel nano-sized copolymer nanofilm provides a unique reinforcement to the mechanical properties of natural textiles. This study reveals that a nano-sized coating provides a strong healing effect to resist the crack propagation of natural fiber surfaces. As little as 0.15 wt% addition of the nanoparticles to the cotton surface improved the fabrics’ tearing resistance by 56% and abrasion resistance by 100%. Surface analyses (SEM and AFM) demonstrated that the nanoparticles formed a uniform monolayer and after heat treatment the monolayer nanofilm covalently bonded to the substrate. This nanofilm is reliable in repeated washes due to its covalent bonding. Using time-of-flight secondary ion mass spectroscopy (TOF-SIMS), we studied the reactivity and phase-transition process of the nanoparticles as they transformed into the nanofilm. The study demonstrates the active role of the N-methylol group and the primary hydroxyl group toward the cotton surface, which modulate the rupture process of the fiber substrate; meanwhile, it demonstrates the positively charged nanoparticles have an excellent dispersibility on the negatively charged cotton surface. The result opens the possibility for various textiles to enhance their properties via an electrostatic affinity and covalent bonding of functional nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1

Similar content being viewed by others

References

  1. Mahltig B, Bo¨ttcher H (2003) J Sol-Gel Sci Technol 27:43

    Article  CAS  Google Scholar 

  2. Mahltig B, Fiedler D, Böttcher H (2004) J Sol-Gel Sci Technol 32:219

    Article  CAS  Google Scholar 

  3. Vince J, Orel B, Vilcnik A, Fir M, Surca Vuk A, Jovanovski V, Simoncic B (2006) Langmuir 22:6489

    Article  CAS  Google Scholar 

  4. Qian L, Sun G (2005) Ind Eng Chem Res 44:852

    Article  CAS  Google Scholar 

  5. Hoefnagels HF, Wu D, de With G, Ming W (2007) Langmuir 23:13158

    Article  CAS  Google Scholar 

  6. Service RF (2003) Science 301:909

    Article  CAS  Google Scholar 

  7. Tiller JC, Liao CJ, Kim L, Klibanov AM (2001) Proc Natl Acad Sci 98:5981

    Article  CAS  Google Scholar 

  8. Schramm C, Binder WH, Tessadri R (2004) J Sol-Gel Sci Technol 29:155

    Article  CAS  Google Scholar 

  9. Mahltig B, Haufe H, Bo¨ttcher H (2005) J Mater Chem 15:4385

    Article  CAS  Google Scholar 

  10. Mahltig B, Audenaert F, Bo¨ttcher H (2005) J Sol-Gel Sci Technol 34:103

    Article  CAS  Google Scholar 

  11. Salon M-CB, Abdelmouleh M, Boufi S, Belgacem MN, Gandini A (2005) J Colloid Interface Sci 289:249

    Article  CAS  Google Scholar 

  12. Soane DS, Offord DA, Linford MR, Millward DB, Ware W, Erskine L, Green E, Lau R (2003) US Pat Appl Publ US 2003013369, 2003

  13. Alince B (2005) J Appl Polym Sci 98:1879

    Article  CAS  Google Scholar 

  14. Alince B, Arnoldova P, Frolik R (2000) J Appl Polym Sci 76:1677

    Article  CAS  Google Scholar 

  15. Zhang Y, Yang WL, Wang CC, Wu W, Fu SK (2006) J Nanosci Nanotechnol 6:2896

    Article  CAS  Google Scholar 

  16. Yang C (2007) Explorations in the application of nanotechnology to improve the mechanical properties of composite materials, in “Chemistry”, The Hong Kong University of Science and Technology, Hong Kong, p 161

  17. PeulaGarcia JM, HidalgoAlvarez R, delasNieves FJ (1997) Colloid Surf A 127:19

    Article  CAS  Google Scholar 

  18. Tsuruta LR, Lessa MM, Carmonaribeiro AM (1995) J Colloid Interface Sci 175:470

    Article  CAS  Google Scholar 

  19. Goldfinger G (1969) Clean surfaces: their preparation and characterization for interfacial studies. Dekker, New York

    Google Scholar 

  20. Young RA, Rowell RM (1986) Cellulose: structure, modification, and hydrolysis. Wiley, New York

    Google Scholar 

  21. Pizarro GDC, Jeria M, Marambio OG, Huerta M, Rivas BL (2005) J Appl Polym Sci 98:1903

    Article  CAS  Google Scholar 

  22. Isik B, Guenay Y (2004) Colloid Polym Sci 287:693

    Article  Google Scholar 

  23. Kawaguchi H, Sugi Y, Ohtsuka Y (1981) J Appl Polym Sci 26:1649

    Article  CAS  Google Scholar 

  24. Yan CE, Xu ZH, Cheng SY, Feng LX (1998) J Appl Polym Sci 68:969

    Article  CAS  Google Scholar 

  25. Kim JH, Chainey M, El-Aasser MS, Vanderhoff JW (1989) J Polym Sci Polym Chem 27:3187

    Article  CAS  Google Scholar 

  26. Kim JH, Chainey M, El-Aasser MS, Vanderhoff JW (1992) J Polym Sci Polym Chem 30:171

    Article  CAS  Google Scholar 

  27. Frick JG, Kottes BH, Reid JD (1959) Text Res J 29:314

    Article  CAS  Google Scholar 

  28. American Society for Testing and Materials (1969) Book of ASTM standards. American Society for Testing and Materials, Philadelphia, p 1716

  29. American Society for Testing and Materials (1969) Book of ASTM standards. American Society for Testing and Materials, Philadelphia, p 539

  30. Andersson M, Hietala S, Tenhu H, Maunu SL (2006) Colloid Polym Sci 284:1255

    Article  CAS  Google Scholar 

  31. Hearle JWS (1963) J Appl Polym Sci 7:1207

    Article  CAS  Google Scholar 

  32. Hearle JWS (1985) Cell Chem Appl 480

  33. Hearle JWS, Sparrow JT (1971) Text Res J 41:736

    Article  Google Scholar 

  34. Hearle JWS, Wilkins AH (2006) J Text Inst 97:1

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research work was partially supported by ITF (Hong Kong) grant No. 109.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Gao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Preparation of other nanoparticles, SEM analyses on the nanoparticle treated cotton fabrics. This material is available free of charge via the internet at https://doi.org/www.springerlink.com/.

(DOC 3289 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, C., Gao, P. & Xu, B. Investigations of a controllable nanoscale coating on natural fiber system: effects of charge and bonding on the mechanical properties of textiles. J Mater Sci 44, 469–476 (2009). https://doi.org/10.1007/s10853-008-3094-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-3094-z

Keywords

Navigation