Skip to main content
Log in

Thermoanalytical characterization of epoxy matrix-glass microballoon syntactic foams

  • Syntactic and Composite Foams
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Syntactic foams are finding new applications where their thermal stability and high temperature response are important. Therefore, the high temperature response of these advanced composites needs to be characterized and correlated with various material parameters. The present study is aimed at evaluating the effect of microballoon (hollow particle) volume fraction (Φ) and wall thickness (w) on thermoanalytical characteristics of epoxy matrix syntactic foams containing glass microballoons. These composites are characterized to determine the glass transition temperature (Tg), the weight loss, and the char yield. It is observed that Tg decreases and the char yield increases due to the presence of microballoons in the resin. The Tg is increased with an increase in Φ but is not significantly affected by w. The thermal stability is increased by increasing w and is relatively less sensitive to Φ. Understanding the relations between thermal properties of syntactic foams, the microballoon wall thickness, and microballoon volume fraction will help in developing syntactic foams optimized for mechanical as well as thermal characteristics. Due to the increased interest in functionally graded syntactic foams containing a gradient in microballoon volume fraction or wall thickness, the results of the present study are helpful in better tailoring these materials for given applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bunn P, Mottram JT (1993) Composites 24:565

    Article  CAS  Google Scholar 

  2. Kim HS, Oh HH (2000) J Appl Polym Sci 76:1324

    Article  CAS  Google Scholar 

  3. Sauvant-Moynot V, Gimenez N, Sautereau H (2006) J Mater Sci 41:4047. doi:https://doi.org/10.1007/s10853-006-7618-0

    Article  CAS  Google Scholar 

  4. Watkins L, Hershey E (2001) Oil Gas J 99:49

    Google Scholar 

  5. Earl JS, Shenoi RA (2004) J Compos Mater 38(15):1345. doi:https://doi.org/10.1177/0021998304042736

    Article  CAS  Google Scholar 

  6. Ouissaden L, Lekhder A, Dumontet H, Benhamida A, Bensalah MO (2008) Adv Theor Appl Mech 1(3):155

    CAS  Google Scholar 

  7. Seamark MJ (1991) Cell Polym 10:308

    CAS  Google Scholar 

  8. Watkins L (1988) In: Chung JS, Sparks Ch P, Brekke NN, Clukey EC, Penney TR (eds) Proceedings of the international offshore mechanics and arctic engineering symposium, ASME, 1988, p 403

  9. Gupta N, Woldesenbet E (2003) Compos Struct 61:311

    Article  Google Scholar 

  10. Gibson LJ, Ashby MF (1988) Cellular solids. Pergamon Press, New York

    Google Scholar 

  11. Gladysz GM, Perry B, McEachen G, Lula J (2006) J Mater Sci 41:4085. doi:https://doi.org/10.1007/s10853-006-7646-9

    Article  CAS  Google Scholar 

  12. John B, Nair C, Devi K, Ninan K (2007) J Mater Sci 42:5398. doi:https://doi.org/10.1007/s10853-006-0778-0

    Article  CAS  Google Scholar 

  13. Kishore, Shankar R, Sankaran S (2005) J Appl Polym Sci 98:673

    Article  CAS  Google Scholar 

  14. Rohatgi PK, Kim JK, Gupta N, Alaraj S, Daoud A (2006) Compos A Appl Sci Manuf 37:430

    Article  Google Scholar 

  15. Song B, Chen W, Frew DJ (2004) J Compos Mater 38:915

    Article  CAS  Google Scholar 

  16. Wouterson EM, Boey FYC, Hu X, Wong SC (2005) Compos Sci Technol 65:1840

    Article  CAS  Google Scholar 

  17. L’Hostis G, Devries F (1998) Compos B Eng 29:351

    Article  Google Scholar 

  18. Sankaran S, Sekhar K, Raju G, Kumar M (2006) J Mater Sci 41:4041. doi:https://doi.org/10.1007/s10853-006-7607-3

    Article  CAS  Google Scholar 

  19. Shabde V, Hoo K, Gladysz G (2006) J Mater Sci 41:4061. doi:https://doi.org/10.1007/s10853-006-7637-x

    Article  CAS  Google Scholar 

  20. Felske JD (2004) Int J Heat Mass Transf 47:3453

    Article  Google Scholar 

  21. Rohatgi PK, Gupta N, Alaraj S (2006) J Compos Mater 40:1163

    Article  CAS  Google Scholar 

  22. Wouterson EM, Boey FYC, Hu X, Wong S-C (2007) Polymer 48:3183

    Article  CAS  Google Scholar 

  23. Kang S, Hong SI, Choe CR, Park M, Rim S, Kim J (2001) Polymer 42:879

    Article  CAS  Google Scholar 

  24. Hancox NL (1998) Mater Des 19:85

    Article  CAS  Google Scholar 

  25. Gupta N (2007) Mater Lett 61:979

    Article  CAS  Google Scholar 

  26. Gupta N, Ricci W (2006) Mater Sci Eng A 427:331

    Article  Google Scholar 

  27. Kishore, Shankar R, Sankaran S (2005) Mater Sci Eng A 412:153

    Article  Google Scholar 

  28. El-Hadek MA, Tippur HV (2003) Int J Solids Struct 40:1885

    Article  Google Scholar 

  29. Gupta N, Nagorny R (2006) J Appl Polym Sci 102:1254

    Article  CAS  Google Scholar 

  30. Wingard CD (2000) Thermochim Acta 357–358:293

    Article  Google Scholar 

  31. Ehrenstein GW, Riedel G, Trawiel P (2004) Thermal analysis of plastics: theory and practice. Carl Hanser Verlag, Munich

    Book  Google Scholar 

  32. C271-99 (1999) Standard test method for density of sandwich core materials. ASTM International, West Conshohocken, PA, USA

  33. Yasmin A, Luo JJ, Abot JL, Daniel IM (2006) Compos Sci Technol 66:2415

    Article  CAS  Google Scholar 

  34. Gupta N, Woldesenbet E (2004) J Cell Plast 40:461

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research work is supported by the National Science Foundation grant CMMI-0726723. The authors wish to express gratitude to the 3M Corporation for supplying microballoons and technical information related to them. Authors thank Momchil Dimchev for help in specimen fabrication. Support of Othmer Institute of Interdisciplinary Studies to the undergraduate students is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikhil Gupta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, T.C., Gupta, N. & Talalayev, A. Thermoanalytical characterization of epoxy matrix-glass microballoon syntactic foams. J Mater Sci 44, 1520–1527 (2009). https://doi.org/10.1007/s10853-008-3074-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-3074-3

Keywords

Navigation