Skip to main content
Log in

Physical characterization of Y2O3–CeO2–TiO2 (YCT) mixed oxides and Ni/YCT cermets as anodes in solid oxide fuel cells

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Mixed oxides in the binary Y2O3–CeO2 (YC) and ternary Y2O3–CeO2–TiO2 (YCT) systems as well as the corresponding Ni cermets were evaluated in terms of application as anodes in solid oxide fuel cells (SOFCs) between 650 and 900 °C. X-ray diffraction (XRD) analysis of the YCT powders calcined up to 1,400 °C showed the cubic fluorite structure of YC and also the formation of an additional phase with pyrochlore structure. The thermal expansion of the ceramics measured in air and Ar/4% H2 showed no significant differences in the temperature range of 25–800 °C. The absolute values of the total electrical conductivity of the ceramics measured between 450 and 900 °C in Ar/4% H2 increased by about 1–2 orders of magnitude compared to those measured in air. Ni/Y0.20Ce0.80O1.9 and Ni/Y0.20C0.75Ti0.05O1.9 cermets with 40 vol% Ni exhibited improved long-term stability regarding their electrical conductivity after annealing at 1,000 °C. The diffusion coefficient of Ce in the 8YSZ electrolyte was measured by compatibility tests. Electrochemical measurements on single SOFCs showed high polarization resistance at the anode/electrolyte interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Uchida H, Suzuki H, Watanabe M (1998) J Electrochem Soc 145:615

    Article  CAS  Google Scholar 

  2. Marina OA, Primdahl S, Bagger C, Mogensen M (1997) In: Stimming U et al (eds) Proceedings of the 5th International Symposium on SOFC, The Electrochemical Society, vol 18, p 540

  3. Mitsuyasu H, Nonaka Y, Eguchi K (1998) Solid State Ionics 113–115:279

    Article  Google Scholar 

  4. Shannon RD (1976) Acta Crystalogr A32:751

    Article  CAS  Google Scholar 

  5. Tietz F, Jungen W, Lersch P, Figaj M, Becker KD, Skarmoutsos D (2002) Chem Mater 14:2252

    Article  CAS  Google Scholar 

  6. Armstrong TR, Stevenson JW, Pederson LR, Raney PE (1996) J Electrochem Soc 143:2919

    Article  CAS  Google Scholar 

  7. Mantzouris X, Zouvelou N, Haanappel VAC, Tietz F, Nikolopoulos P (2007) J Mater Sci 42:10152. doi:https://doi.org/10.1007/s10853-007-2099-3

    Article  CAS  Google Scholar 

  8. Mertens J, Haanappel VAC, Tropartz C, Herzhof W, Buchkremer HP (2006) J Fuel Cell Sci Technol 3:125

    Article  CAS  Google Scholar 

  9. Zhang TS, Ma J, Huang HT, Hing P, Xia ZT, Chan SH, Kilner JA (2003) Solid State Sci 5:1505

    Article  CAS  Google Scholar 

  10. Longo V, Podda L (1981) J Mater Sci Lett 16:839

    CAS  Google Scholar 

  11. Uematsu K, Shinozaki K, Sakurai O, Mizutani N, Kato M (1979) J Am Ceram Soc 62:219

    Article  CAS  Google Scholar 

  12. Skarmoutsos D, Tietz F, Nikolopoulos P (2001) Fuel Cells 1:243

    Article  CAS  Google Scholar 

  13. Sigalovsky J, Haggerty J, Sheehan J, Reynolds G (1996) Ceram Eng Sci Proc 17:322

    Article  CAS  Google Scholar 

  14. Mogensen G, Mogensen M (1993) Thermochim Acta 214:47

    Article  CAS  Google Scholar 

  15. Skarmoutsos D, Nikolopoulos P, Tietz F, Vinke IC (2004) Solid State Ionics 170:153

    Article  CAS  Google Scholar 

  16. Tuller HL, Nowick AS (1975) J Electrochem Soc 122:255

    Article  CAS  Google Scholar 

  17. Yamaguchi S, Kobayashi K, Abe K, Yamazaki S, Iguchi Y (1998) Solid State Ionics 113–115:393

    Article  Google Scholar 

  18. Yahiro H, Eguchi K, Arai H (1986) Solid State Ionics 21:37

    Article  CAS  Google Scholar 

  19. Eguchi K, Setoguchi T, Inoue T, Arai H (1992) Solid State Ionics 52:165

    Article  CAS  Google Scholar 

  20. Yahiro H, Baba Y, Eguchi K, Arai H (1988) J Electrochem Soc 135:2077

    Article  CAS  Google Scholar 

  21. Van Herle J, Horita T, Kawada T, Sakai N, Yokokawa H, Dokiya M (1996) Solid State Ionics 86–88:1255

    Google Scholar 

  22. Peng R, Xia C, Liu X, Peng D, Meng G (2002) Solid State Ionics 152–153:561

    Article  Google Scholar 

  23. Tianshu Z, Hing P, Huang H, Kilner J (2002) Solid State Ionics 148:567

    Article  Google Scholar 

  24. Tuller HL, Nowick AS (1977) J Phys Chem Solids 38:859

    Article  CAS  Google Scholar 

  25. Levy M, Fouletier J, Kleitz M (1980) J de Physique Colloque C6 41:335

    Google Scholar 

  26. Arai H, Kunisaki T, Shimizu Y, Seiyama T (1986) Solid State Ionics 20:241

    Article  CAS  Google Scholar 

  27. Wang S, Kobayashi T, Dokiya M, Hashimoto T (2000) J Electrochem Soc 147:3606

    Article  CAS  Google Scholar 

  28. Zouvelou N, Mantzouris X, Nikolopoulos P (2007) Int J Adhes Adhes 27:380

    Article  CAS  Google Scholar 

  29. Mantzouris X, Zouvelou N, Skarmoutsos D, Nikolopoulos P, Tietz F (2005) J Mater Sci 40:2471. doi:https://doi.org/10.1007/s10853-005-1977-9

    Article  CAS  Google Scholar 

  30. Eustathopoulos N, Drevet B (1998) Mater Sci Eng A249:176

    Article  CAS  Google Scholar 

  31. Mogensen M, Lindegaard T, Hansen UR, Mogensen G (1994) J Electrochem Soc 141:2122

    Article  CAS  Google Scholar 

  32. Tsoga A, Naoumidis A, Stöver D (2000) Solid State Ionics 135:403

    Article  CAS  Google Scholar 

  33. Mai A, Haanappel VAC, Tietz F, Stöver D (2006) Solid State Ionics 177:2103

    Article  CAS  Google Scholar 

  34. Bekale VM, Legros C, Sattonnay G, Huntz AM, Lesage B, Argirusis C, Jomard F (2006) Defect Diffus Forum 258–260:46

    Google Scholar 

  35. Tietz F, Wessel E (2002) In: Huijsmans J (ed) Proceedings of the 5th European SOFC Forum, European Fuel Cell Forum, Oberrohrdorf, Switzerland, vol 2, p 814

Download references

Acknowledgement

Financial support from the European Commission within the EU Integrated Project REALSOFC (Project No. SES6-CT-2003-50261) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Nikolopoulos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mantzouris, X., Triantafyllou, G., Tietz, F. et al. Physical characterization of Y2O3–CeO2–TiO2 (YCT) mixed oxides and Ni/YCT cermets as anodes in solid oxide fuel cells. J Mater Sci 43, 7057–7065 (2008). https://doi.org/10.1007/s10853-008-3063-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-3063-6

Keywords

Navigation