Skip to main content
Log in

Characterization and reactivity of chromia nanoparticles prepared by urea forced hydrolysis

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Chromia (Cr2O3) nanoparticles were prepared by urea forced hydrolysis in the presence of chromium (III) nitrate using NaCl as a precipitating agent. The size, distribution, and purity of the particles were evaluated. The necessity of polyvinylpyrrolidone (PVP) as a surfactant to prevent aggregation was also investigated. In the presence of PVP, non-aggregated spherical-like nanoparticles (3 ± 1 nm) were formed, whereas in the absence of PVP, spherical-like weakly agglomerated nanoparticles (85 ± 16 nm) comprised of 10 nm nanoparticle subunits were produced, creating a large surface area. The as-formed hydrated Cr2O3 nanoparticles were amorphous, although they could be easily converted into crystalline form by heating to 400 °C for 1 h, with minimal particle aggregation and size reduction. Attenuated total reflectance Fourier transform infrared spectroscopy indicated that preparation methods (surfactant and precipitating agent) influence surface reactivity of the nanoparticles to catechol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kocon M, Michorczyk P, Ogonowski J (2005) Catal Lett 101:53

    Article  CAS  Google Scholar 

  2. Wang S, Murata K, Hayakawa T, Hamakawa S (2000) Appl Catal A 196:1

    Article  CAS  Google Scholar 

  3. Munoz R, Maso N, Julian B, Marquez F, Beltran H, Escribano P, Cordoncillo E (2004) J Eur Ceram Soc 24:2087

    Article  CAS  Google Scholar 

  4. Brock T, Groteklaes M, Mischke P (2000) European coating handbook. Vincentz Verlag, Hanover, Germany

    Google Scholar 

  5. Cho B, Choi E, Chung S, Kim K, Kang T, Park C, Kim B (1999) Surf Sci 439:L799

    Article  CAS  Google Scholar 

  6. Kitsunai H, Hokkirigawa K, Tsumaki N, Kato K (1991) Wear 151:279

    Article  CAS  Google Scholar 

  7. Hsu C-H, Huang D-H, Ho W-Y, Huang L-T, Chang C-L (2006) Mater Sci Eng A 429:212

    Article  CAS  Google Scholar 

  8. Kawabata A, Yoshinaka M, Hirota K, Yamaguchi O (1995) J Am Ceram Soc 78:2271

    Article  CAS  Google Scholar 

  9. Kovarik O, Siegl J (2008) Strength Mater 40:79

    Article  CAS  Google Scholar 

  10. Balachandran U, Siegel RW, Liao YX, Askew TR (1995) Nanostruct Mater 5:505

    Article  CAS  Google Scholar 

  11. Ring T-A (1990) MRS Bull 15:34

    Article  CAS  Google Scholar 

  12. Jiang L, Yusong W, Yubai P, Jingkun G (2006) J Non-Cryst Solids 352:2404

    Article  CAS  Google Scholar 

  13. Kim D-W, Shin S-I, Lee JD, Oh S-G (2004) Mater Lett 58:1894

    Article  CAS  Google Scholar 

  14. Chatterjee M, Siladitya B, Ganguli D (1995) Mater Lett 25:261

    Article  CAS  Google Scholar 

  15. Arul Dhas N, Koltypin Y, Gendanken A (1997) Chem Mater 9:3159

    Article  Google Scholar 

  16. Zhong ZC, Cheng RH, Bosley J, Dowben PA, Sellmyer DJ (2001) Appl Surf Sci 181:196

    Article  CAS  Google Scholar 

  17. Morales JG, Carmona JG, Clemente RR, Muraviev D (2003) Langmuir 19:9110

    Article  CAS  Google Scholar 

  18. Zettlemoyer AC, Siddiq M, Micale FJ (1978) J Colloid Interface Sci 66:173

    Article  CAS  Google Scholar 

  19. Tsuzuki T, McCormick PG (2000) Acta Mater 48:2795

    Article  CAS  Google Scholar 

  20. Xu H, Lou T, Li Y (2004) Inorg Chem Commun 7:666

    Article  CAS  Google Scholar 

  21. Kim D-W, Oh S-G (2005) Mater Lett 59:976

    Article  CAS  Google Scholar 

  22. Ocana M (2001) J Eur Ceram Soc 21:931

    Article  CAS  Google Scholar 

  23. Demchak R, Matijevic E (1969) J Colloid Interface Sci 31:257

    Article  CAS  Google Scholar 

  24. Music S, Maljkovic M, Popovic S, Trojko R (1999) Croat Chem Acta 72:789

    CAS  Google Scholar 

  25. Sprycha R, Matijevic E (1989) Langmuir 5:479

    Article  CAS  Google Scholar 

  26. Subrt J, Stengl V, Bakardjieva S, Szatmary L (2006) Powder Technol 169:33

    Article  CAS  Google Scholar 

  27. Soler-Illia G, Jobbagy M, Candal RJ, Regazzoni AE, Blesa MA (1998) J Dispers Sci Technol 19:207

    Article  Google Scholar 

  28. Music S, Popovic S, Maljkovic M, Dragcevic D (2002) J Alloys Compd 347:324

    Article  CAS  Google Scholar 

  29. Wang H, Fan Y, Shi G, Liu Z, Liu H, Bao X (2007) Catal Today 125:149

    Article  CAS  Google Scholar 

  30. Hind AR, Bhargava SK, McKinnon A (2001) Adv Colloid Interface Sci 93:91

    Article  CAS  Google Scholar 

  31. McQuillan AJ (2001) Adv Mater 13:1034

    Article  CAS  Google Scholar 

  32. He R, Davda RR, Dumesic JA (2005) J Phys Chem B 109:2810

    Article  CAS  Google Scholar 

  33. Burgi T, Bieri M (2004) J Phys Chem B 108:13364

    Article  CAS  Google Scholar 

  34. O’Day PA (1999) Rev Geophys 37:249

    Article  Google Scholar 

  35. Brown GE Jr, Henrich VE, Casey WH, Clark DL, Eggleston C, Felmy A, Goodman WA, Gratzel M, Maciel G, McCarthy MI, Nealson K, Sverjensky DA, Toney MF, Zachara JM (1999) Chem Rev 99:77

    Article  CAS  Google Scholar 

  36. Connor PA, Dobson KD, McQuillan AJ (1995) Langmuir 11:4193

    Article  CAS  Google Scholar 

  37. Rivera D, Harris JM (2001) Anal Chem 73:411

    Article  CAS  Google Scholar 

  38. Yang D-Q, Xiong Y-O, Guo Y, Da D-A, Lu W-G (2000) J Mater Sci 36:263. doi:https://doi.org/10.1023/A:1004894532155

    Article  Google Scholar 

  39. Markiewicz P, Goh MC (1995) J Vac Sci Technol B 13:1115

    Article  CAS  Google Scholar 

  40. Hosokawa M, Nogi K, Naito M, Yokoyama T (eds) (2007) Nanoparticle technology handbook. Elsevier, Oxford

    Google Scholar 

  41. Amonette JE, Rai D (1990) Clays Clay Miner 38:129

    Article  CAS  Google Scholar 

  42. Bordoko Y, Humphrey SM, Tilley TD, Frei H, Somorjai GA (2007) J Phys Chem C 111:6288

    Article  CAS  Google Scholar 

  43. Tabbal M, Kahwaji S, Christidis TC, Nsouli B, Zahraman K (2006) Thin Solid Films 515:1976

    Article  CAS  Google Scholar 

  44. Brown DA, Cunningham D, Glass WK (1968) Spectrochim Acta A 24:965

    Article  CAS  Google Scholar 

  45. Banobre-Lopez M, Vazquez-Vazquez C, Rivas J, Lopez-Quintela MA (2003) Nanotechnology 14:318

    Article  CAS  Google Scholar 

  46. Finger LW, Hazen RM (1980) J Appl Phys 51:5362

    Article  CAS  Google Scholar 

  47. Patterson AL (1939) Phys Rev 56:978

    Article  CAS  Google Scholar 

  48. Vasudevan D, Stone AT (1996) Environ Sci Technol 30:1604

    Article  CAS  Google Scholar 

  49. Araujo PZ, Morando PJ, Blesa MA (2005) Langmuir 21:3470

    Article  CAS  Google Scholar 

  50. Duckworth OW, Martin ST (2001) Geochim Cosmochim Acta 65:4289

    Article  CAS  Google Scholar 

  51. Johnson SB, Yoon TH, Kocar BD, Brown GE Jr (2004) Langmuir 20:4996

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was funded by the Merck Institute for Science Education, Kentucky NSF EPSCoR, Northern Kentucky University Center for Integrated Natural Science and Mathematics, NKU Greaves Endowment, and the NKU Research Foundation. The work was also supported in part by the National Science Foundation Instrument for Materials Research award (DMR-0526686) and Major Research Instrumentation award (EAR-0520921).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heather A. Bullen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gulley-Stahl, H.J., Schmidt, W.L. & Bullen, H.A. Characterization and reactivity of chromia nanoparticles prepared by urea forced hydrolysis. J Mater Sci 43, 7066–7072 (2008). https://doi.org/10.1007/s10853-008-3056-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-3056-5

Keywords

Navigation