Journal of Materials Science

, Volume 44, Issue 6, pp 1512–1519 | Cite as

Processing and compression testing of Ti6Al4V foams for biomedical applications

Syntactic and Composite Foams


Open cell Ti6Al4V foams (60% porosity) were prepared at sintering temperatures between 1,200 and 1,350 °C using ammonium bicarbonate particles (315–500 μm) as space holder. The resulting cellular structure of the foams showed bimodal pore size distribution, comprising macropores (300–500 μm) and micropores (1–30 μm). Compression tests have shown that increasing sintering temperature increased the elastic modulus, yield and compressive strength, and failure strain of foams. The improvements in the mechanical properties of foams prepared using smaller size Ti64 powder with bimodal particle distribution were attributed to the increased number of sintering necks and contact areas between the particles. Finally, the strength of foams sintered at 1,350 °C was found to satisfy the strength requirement for cancellous bone replacement.


Foam Compressive Strength Sinter Temperature Ammonium Bicarbonate Failure Strain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank the Technology Development Foundation of Turkey (TTGV) for the grant #TTGV-102/T13.


  1. 1.
    Long M, Rack HJ (1998) Biomaterials 19:1621PubMedCrossRefGoogle Scholar
  2. 2.
    Pilliar RM (1987) J Biomed Mater Res-Appl Biomater 21:1CrossRefGoogle Scholar
  3. 3.
    Hulbert SF, Young FA, Mathews RS, Klawitter JJ, Talbert CD, Stelling FH (1970) J Biomed Mater Res 4:433PubMedCrossRefGoogle Scholar
  4. 4.
    Bobyn JD, Miller JE (1994) Features of biologically fixed devices. American Academy of Orthopaedic Surgeons, ChicagoGoogle Scholar
  5. 5.
    Oh IH, Nomura N, Hanada S (2002) Mater Trans 43:443CrossRefGoogle Scholar
  6. 6.
    Wen CE, Yamada Y, Shimojima K, Chino Y, Asahina T, Mabuchi M (2002) J Mater Sci-Mater Med 13:397PubMedCrossRefGoogle Scholar
  7. 7.
    Assad M, Likibi F, Jarzem P, Leroux MA, Coillard C, Rivard CH (2004) Materialwiss Werkstofftech 35:219CrossRefGoogle Scholar
  8. 8.
    ASTM F 1580-95, Standard specification for titanium and Ti6Al4V alloy powders for coating surgical implants.Google Scholar
  9. 9.
    Martin B, Stiller C, Buchkremer HP, Stöver D, Baur H (2000) Adv Eng Mater 2:196CrossRefGoogle Scholar
  10. 10.
    Rho JY, Kuhn-Spearing L, Zioupos P (1998) Med Eng Phys 20:92PubMedCrossRefGoogle Scholar
  11. 11.
    Tasdemirci A, Hızal A, Altındis M, Hall IW, Guden M (2008) Mater Sci Eng A 474:335CrossRefGoogle Scholar
  12. 12.
    Guden M, Celik E, Cetiner S, Aydin A (2004) In: Biomaterials: from molecules to engineered tissues, p 257Google Scholar
  13. 13.
    Tencer F, Johnson KD (1994) In: Biomechanics in orthopaedic trauma: bone fracture and fixation. Martin Dunitz Ltd, London, p 954Google Scholar
  14. 14.
    Burstein AH, Reilly DT, Martens M (1976) J Bone Joint Surg 58A:82Google Scholar
  15. 15.
    Chang YS, Oka M, Kobayashi M, Gu HO, Li ZL, Nakamura T, Ikada Y (1996) Biomaterials 17:1141PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • M. E. Dizlek
    • 1
  • M. Guden
    • 1
    • 2
    • 3
  • U. Turkan
    • 1
  • A. Tasdemirci
    • 1
    • 2
    • 3
  1. 1.Department of Mechanical Engineeringİzmir Institute of TechnologyUrla, IzmirTurkey
  2. 2.Center for Materials Researchİzmir Institute of TechnologyUrla, IzmirTurkey
  3. 3.Dynamic Testing and Modeling Laboratoryİzmir Institute of TechnologyUrla, IzmirTurkey

Personalised recommendations