Skip to main content

Advertisement

Log in

Processing and compression testing of Ti6Al4V foams for biomedical applications

  • Syntactic and Composite Foams
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Open cell Ti6Al4V foams (60% porosity) were prepared at sintering temperatures between 1,200 and 1,350 °C using ammonium bicarbonate particles (315–500 μm) as space holder. The resulting cellular structure of the foams showed bimodal pore size distribution, comprising macropores (300–500 μm) and micropores (1–30 μm). Compression tests have shown that increasing sintering temperature increased the elastic modulus, yield and compressive strength, and failure strain of foams. The improvements in the mechanical properties of foams prepared using smaller size Ti64 powder with bimodal particle distribution were attributed to the increased number of sintering necks and contact areas between the particles. Finally, the strength of foams sintered at 1,350 °C was found to satisfy the strength requirement for cancellous bone replacement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Long M, Rack HJ (1998) Biomaterials 19:1621

    Article  CAS  Google Scholar 

  2. Pilliar RM (1987) J Biomed Mater Res-Appl Biomater 21:1

    Article  CAS  Google Scholar 

  3. Hulbert SF, Young FA, Mathews RS, Klawitter JJ, Talbert CD, Stelling FH (1970) J Biomed Mater Res 4:433

    Article  CAS  Google Scholar 

  4. Bobyn JD, Miller JE (1994) Features of biologically fixed devices. American Academy of Orthopaedic Surgeons, Chicago

    Google Scholar 

  5. Oh IH, Nomura N, Hanada S (2002) Mater Trans 43:443

    Article  CAS  Google Scholar 

  6. Wen CE, Yamada Y, Shimojima K, Chino Y, Asahina T, Mabuchi M (2002) J Mater Sci-Mater Med 13:397

    Article  CAS  Google Scholar 

  7. Assad M, Likibi F, Jarzem P, Leroux MA, Coillard C, Rivard CH (2004) Materialwiss Werkstofftech 35:219

    Article  CAS  Google Scholar 

  8. ASTM F 1580-95, Standard specification for titanium and Ti6Al4V alloy powders for coating surgical implants.

  9. Martin B, Stiller C, Buchkremer HP, Stöver D, Baur H (2000) Adv Eng Mater 2:196

    Article  Google Scholar 

  10. Rho JY, Kuhn-Spearing L, Zioupos P (1998) Med Eng Phys 20:92

    Article  CAS  Google Scholar 

  11. Tasdemirci A, Hızal A, Altındis M, Hall IW, Guden M (2008) Mater Sci Eng A 474:335

    Article  Google Scholar 

  12. Guden M, Celik E, Cetiner S, Aydin A (2004) In: Biomaterials: from molecules to engineered tissues, p 257

  13. Tencer F, Johnson KD (1994) In: Biomechanics in orthopaedic trauma: bone fracture and fixation. Martin Dunitz Ltd, London, p 954

  14. Burstein AH, Reilly DT, Martens M (1976) J Bone Joint Surg 58A:82

    Article  Google Scholar 

  15. Chang YS, Oka M, Kobayashi M, Gu HO, Li ZL, Nakamura T, Ikada Y (1996) Biomaterials 17:1141

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors would like to thank the Technology Development Foundation of Turkey (TTGV) for the grant #TTGV-102/T13.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Guden.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dizlek, M.E., Guden, M., Turkan, U. et al. Processing and compression testing of Ti6Al4V foams for biomedical applications. J Mater Sci 44, 1512–1519 (2009). https://doi.org/10.1007/s10853-008-3038-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-3038-7

Keywords

Navigation