Journal of Materials Science

, Volume 43, Issue 22, pp 7132–7140 | Cite as

Isotactic and syndiotactic polypropylene/multi-wall carbon nanotube composites: synthesis and properties

  • Anton A. Kovalchuk
  • Vitaliy G. Shevchenko
  • Alexander N. Shchegolikhin
  • Polina M. Nedorezova
  • Alla N. Klyamkina
  • Alexander M. Aladyshev


Isotactic polypropylene (iPP) and syndiotactic polypropylene (sPP) nanocomposites containing 0.1–3.5 wt.% multi-wall carbon nanotubes (MWCNTs) have been synthesized via in situ polymerization method with the use of C2- and Cs- symmetry zirconocenes activated by methylaluminoxane (MAO) in liquid propylene medium. Fracture morphology studies by SEM reveal different MWCNT dispersion efficiency in various polymer matrices, which arises from the catalytic peculiarities of the composite synthesis. Considerable Young’s modulus enhancement of iPP and sPP (25–66%) takes place even at low MWCNT loadings (below 0.5 wt.%). The obtained nanocomposites can find use as efficient electromagnetic shielding materials and microwave absorbing filters due to relatively low permittivity values and considerable dielectric losses in microwave range. Calorimetry data demonstrate that MWCNTs exert evident influence as nucleating agents causing the rise of iPP and sPP crystallization temperature. Considerable retardation effect on iPP thermal oxidative degradation has been observed: the temperature of maximal weight loss rate rises by ~52 °C upon incorporating only 1.4 wt.% MWCNTs.


Filler Content Filler Particle Isotactic Polypropylene Metallocene Catalyst Molecular Weight Characteristic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors gratefully thank Dr. Anastasia Bolshakova from Moscow State University for the assistance in SEM observations and Dr. Konstantin Bryliakov (G. K. Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences, Novosibirsk) for 13C NMR analysis. The authors are also grateful to Professor Dmitry Lemenovsky and his group from Department of Chemistry of Moscow State University for the provision of the catalyst. This work was supported by Haldor Topsoe A/S grant.


  1. 1.
    Ajayan PM (1999) Chem Rev 99:1787CrossRefGoogle Scholar
  2. 2.
    Szleifer I, Yerushalmi-Rozen R (2005) Polymer 46:7803CrossRefGoogle Scholar
  3. 3.
    Velasco-Santos C, Martinez-Hernandez AL, Castano VM (2005) Compos Interface 11(8–9):567Google Scholar
  4. 4.
    Moniruzzaman M, Winey KI (2006) Macromolecules 39:5194CrossRefGoogle Scholar
  5. 5.
    Galli P, Vecellio G (2004) J Polym Sci [A1] 42:396Google Scholar
  6. 6.
    Balow MJ (2003) In: Karian HG (ed) Handbook of polypropylene and polypropylene composites. CRC Press, New YorkGoogle Scholar
  7. 7.
    Supaphol P, Spruiell JE (1999) In: Bendikt GM (ed) Metallocene technology in commercial applications. William Andrew Inc., Society of Plastics EngineersGoogle Scholar
  8. 8.
    Schwerdtfeger ED, Miller SA (2007) Macromolecules 40:5662CrossRefGoogle Scholar
  9. 9.
    Ajayan PM, Tour JM (2007) Nature 447:1066CrossRefGoogle Scholar
  10. 10.
    McIntosh D, Khabashesku VN, Barrera EV (2006) Chem Mater 18:4561CrossRefGoogle Scholar
  11. 11.
    Maier C, Calafut T (1998) Polypropylene: the definitive user’s guide and databook. William Andrew Inc., Plastics Design LibraryGoogle Scholar
  12. 12.
    Velasco-Santos C, Martinez-Hernandez AL, Fisher FT, Ruoff R, Castano VM (2003) Chem Mater 15:4470CrossRefGoogle Scholar
  13. 13.
    Philip B, Xie J, Abraham JK, Varadan VK (2005) Polym Bull 53:127CrossRefGoogle Scholar
  14. 14.
    Wiemann K, Kaminsky W, Gojny FH, Schulte K (2005) Macromol Chem Phys 206:1472CrossRefGoogle Scholar
  15. 15.
    Kaminsky W, Wiemann K (2006) Compos Interface 13(4–6):365Google Scholar
  16. 16.
    Kaminsky W, Funck A, Wiemann K (2006) Macromol Symp 239:1CrossRefGoogle Scholar
  17. 17.
    Funck A, Kaminsky W (2007) Composites Sci Tech 67(5):906Google Scholar
  18. 18.
    Bonduel D, Bredeau S, Alexandre M, Monteverde F, Dubois P (2007) J Mater Chem 17:2359CrossRefGoogle Scholar
  19. 19.
    Bredeau S, Boggioni L, Bertini F, Tritto I, Monteverde F, Alexandre M, Dubois P (2007) Macromol Rapid Commun 28:822CrossRefGoogle Scholar
  20. 20.
    Kaminsky W, Funck A (2007) Macromol Symp 260:1CrossRefGoogle Scholar
  21. 21.
    Kaminsky W (2008) Macromol Chem Phys 209:459CrossRefGoogle Scholar
  22. 22.
    Coates GW (2002) J Chem Soc Dalton Trans 467Google Scholar
  23. 23.
    Resconi L, Cavallo L, Fait A, Piemontesi F (2000) Chem Rev 100:1253CrossRefGoogle Scholar
  24. 24.
    Razavi A, Atwood JL (1993) J Organomet Chem 459:117CrossRefGoogle Scholar
  25. 25.
    Xalter R, Halbach TS, Mulhaupt R (2006) Macromol Symp 236:145CrossRefGoogle Scholar
  26. 26.
    Nedorezova PM, Tsvetkova VI, Aladyshev AM, Savinov DV, Klyamkina AN, Optov VA, Lemenovskii DA (2001) Polym Sci Ser A 43(4)356Google Scholar
  27. 27.
    Nedorezova PM, Shevchenko VG, Shchegolikhin AN, Tsvetkova VI, Korolev YM (2004) Polym Sci Ser A 46(3)242Google Scholar
  28. 28.
    Liu T, Phang IY, Shen L, Chow SY, Zhang W-D (2004) Macromolecules 37:7214CrossRefGoogle Scholar
  29. 29.
    Gao J, Itkis ME, Yu A, Bekyarova E, Zhao B, Haddon RC (2005) J Am Chem Soc 127:3847CrossRefGoogle Scholar
  30. 30.
    Moniruzzaman M, Chattopadhyay J, Billups WE, Winey KI (2007) Nano Lett 7(5):1178Google Scholar
  31. 31.
    McNally T, Potschke P, Halley P, Murphy M, Martin D, Bell SEJ, Brennan GP, Bein D, Lemoine P, Quinn JP (2005) Polymer 46:8222CrossRefGoogle Scholar
  32. 32.
    Ponomarenko A, Shevchenko V, Figovsky OL (2005) Scientific Israel—Technological Advantages 7:37Google Scholar
  33. 33.
    Scarisbrick RM (1973) J Phys D Appl Phys 6:2098CrossRefGoogle Scholar
  34. 34.
    Reynolds JA, Hough JM (1957) Proc Phys Soc 70(8)425B:769Google Scholar
  35. 35.
    Landau LD, Lifshitz EM, Pitaevskii LP (1984) Electrodynamics of continuous media (course of theoretical physics), 2nd edn, vol 8. Elsevier Butterworth-Heinemann, OxfordGoogle Scholar
  36. 36.
    Huxtable ST, Cahill DG, Shenogin S, Xue L, Ozisik R, Barone P, Usrey M, Strano MS, Siddons G, Shim M, Keblinski P (2003) Nat Mater 2:731CrossRefGoogle Scholar
  37. 37.
    Dotson DL (2003) WO 03/087175Google Scholar
  38. 38.
    Watts PCP, Fearon PK, Hsu WK, Billingham NC, Kroto HW, Walton DRM (2003) J Mater Chem 13:491CrossRefGoogle Scholar
  39. 39.
    Raravikar NR, Schadler LS, Vijayaraghavan A, Zhao Y, Wei B, Ajayan PM (2005) Chem Mater 17:974CrossRefGoogle Scholar
  40. 40.
    Marosfoi BB, Szabo A, Marosi G, Tabuani D, Camino G, Pagliari S (2006) J Therm Anal Cal 86(3):669Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Anton A. Kovalchuk
    • 1
  • Vitaliy G. Shevchenko
    • 2
  • Alexander N. Shchegolikhin
    • 3
  • Polina M. Nedorezova
    • 1
  • Alla N. Klyamkina
    • 1
  • Alexander M. Aladyshev
    • 1
  1. 1.N.N. Semenov Institute of Chemical Physics of Russian Academy of SciencesMoscowRussia
  2. 2.N.S. Enikolopov Institute of Synthetic Polymer Materials of Russian Academy of SciencesMoscowRussia
  3. 3.N.M. Emanuel Institute of Biochemical Physics of Russian Academy of SciencesMoscowRussia

Personalised recommendations