Skip to main content
Log in

Structure characterization of hydration products generated by alkaline activation of granulated blast furnace slag

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The hydration mechanism and mineral phase structures by waterglass activation of granulated blast furnace slag (GBFS) are investigated in detail by means of XRD and FTIR. The results show that the network structures of glassy phases are disintegrated and there is not any new material phase formed in the early stage of hydration processes. With evolution of hydration, the polycondensation reaction takes place between [SiO4]4− and [AlO4]5− species and some new mineral phases are produced. A hydration mechanism for the formation of geopolymer by waterglass activation of GBFS is proposed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Duxson P, Provis JL, Lukey GC, Van Deventer JSJ (2007) Cem Concr Res 37:1590

    Article  CAS  Google Scholar 

  2. Glukhovsky VD (1959) Soil silicates. Gosstroyizdat USSR, Kiev, in Russian

    Google Scholar 

  3. Krivenko PV, Skurchinskaya J (1991) In: Proceedings of the international conference on the utilization of fly ash and other coal combustion by-products, Shanghai, pp 64.1–64.7

  4. Krivenko PV, Kovalchuk GY (2002) Innovations and developments in concrete materials and construction. In: proceedings of the international conference on challenges of concrete construction, Dundee, pp 123–132

  5. Usherov-Marshak AV, Krivenko PV, Pershina LA (1998) Cem Concr Res 28(9):1289

    Article  CAS  Google Scholar 

  6. Khate D, Chaudhary R (2007) J Mater Sci 42:729. doi:https://doi.org/10.1007/s10853-006-0401-4

    Article  Google Scholar 

  7. Komnitsas K, Zaharak D (2007) Miner Eng 20:1261

    Article  CAS  Google Scholar 

  8. Duxson P, Fernandez-Jimenez A, Provis JL, Lukey GC, Palomo A, Van Deventer JSJ (2007) J Mater Sci 42:2917. doi:https://doi.org/10.1007/s10853-006-0637-z

    Article  CAS  Google Scholar 

  9. Roy DM (1999) Cem Concr Res 29:249

    Article  CAS  Google Scholar 

  10. Van Deventer JSJ, Provis JL, Duxson P, Lukey GC (2007) J Hazard Mater 139:506

    Article  Google Scholar 

  11. Krivenko PV, Kovalchuk GY (2007) J Mater Sci 42:2944. doi:https://doi.org/10.1007/s10853-006-0528-3

    Article  CAS  Google Scholar 

  12. Davidovits J (1991) J Therm Anal 37:1633

    Article  CAS  Google Scholar 

  13. Pereira CF, Luna Y, Querol X, Antenucci D, Vale J (2008) Waste stabilization/solidification of an electric arc furnace dust using fly ash-based geopolymers. Fuel. doi:https://doi.org/10.1016/j.Fuel.2008.01.021

    Article  Google Scholar 

  14. Panagiotopoulou Ch, Kontori E, Perraki Th, Kakali G (2007) J Mater Sci 42:2967. doi:https://doi.org/10.1007/s10853-006-0531-8

    Article  CAS  Google Scholar 

  15. Yip CK, Lukey GC, Van Deventer JSJ (2005) Cem Concr Res 35:1688

    Article  CAS  Google Scholar 

  16. Yip CK, Lukey GC, Van Deventer JSJ (2004) Ceram Trans 153:187

    Google Scholar 

  17. Yip CK, Van Deventer JSJ (2003) J Mater Sci 38:3851. doi:https://doi.org/10.1023/A:1025904905176

    Article  CAS  Google Scholar 

  18. Cheng TW, Chiu JP (2003) Miner Eng 16:205

    Article  CAS  Google Scholar 

  19. Song S, Sohn D, Jennings HM, Mason TO (2000) J Mater Sci 35:249. doi:https://doi.org/10.1023/A:1004742027117

    Article  CAS  Google Scholar 

  20. Sagoe-Crentsil K, Weng L (2007) J Mater Sci 42:3007. doi:https://doi.org/10.1007/s10853-006-0818-9

    Article  CAS  Google Scholar 

  21. Schneider J, Cincotto MA, Panepucci H (2001) Cem Concr Res 31:993

    Article  CAS  Google Scholar 

  22. Bakharev T (2005) Cem Concr Res 35:658

    Article  CAS  Google Scholar 

  23. Feng D, Tan H, Van Deventer JS (2004) J Mater Sci 39:571. doi:https://doi.org/10.1023/B:JMSC.0000011513.87316.5c

    Article  CAS  Google Scholar 

  24. Yousuf M, Mollah A, Hess TR, Tsai YN, Cocke DL (1993) Cem Concr Res 23:773

    Article  Google Scholar 

  25. Perera DS, Uchida O, Vance ER, Finnie KS (2007) J Mater Sci 42:3099. doi:https://doi.org/10.1007/s10853-006-0533-6

    Article  CAS  Google Scholar 

  26. Lee WKW, Van Deventer JSJ (2002) Colloids Surf A Physicochem Eng Asp 211:115

    Article  CAS  Google Scholar 

  27. Weng L, Sagoe-Crentsil K (2007) J Mater Sci 42:2997. doi:https://doi.org/10.1007/s10853-006-0820-2

    Article  CAS  Google Scholar 

  28. Silva PD, Sagoe-Crenstil K, Sirivivatnanon V (2007) Cem Concr Res 37:512

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the Specialized Research Fund for the Doctoral Program of Higher Education (SRFDP) (No. 20050698034) and the Project Sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry (No. 200555).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yao Jun Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y.J., Zhao, Y.L., Li, H.H. et al. Structure characterization of hydration products generated by alkaline activation of granulated blast furnace slag. J Mater Sci 43, 7141–7147 (2008). https://doi.org/10.1007/s10853-008-3028-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-3028-9

Keywords

Navigation