Skip to main content
Log in

Effect of Ce and La on microstructure and properties of a 6xxx series type aluminum alloy

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The increase in iron content in secondary sources of aluminum has led to an increase in the amount of Fe-bearing intermetallic phases in Al alloys. One of these intermetallics, β-AlFeSi, which is seen as the dominant phase in 6xxx series alloys, reduces bendability of wrought alloys, which in turn, limits their usage in the automotive industry. It is known that small additions of Sr prevent the formation of the β phase and facilitate the precipitation of a less detrimental intermetallic, α-AlFeSi, in as-cast alloys. It is worth investigating whether other elements cause a similar effect. Cerium and lanthanum as the least expensive representatives of rare-earth metals are tried as such elements. It is found that in alloys containing 0.1–0.2 wt.% of lanthanum, the fraction of β particles is pronouncedly less than that in the reference alloy. In addition to this advantage, much smaller grains are seen in the alloy with 0.2 wt.% La. Despite similarities between La and Ce, the latter metal neither modifies the microstructure nor noticeably affects the grain size. Moderate thermo-mechanical processing nullifies the beneficial effect of small La additions resulting in no improvement in the bendability of the alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. https://doi.org/ddsdx.uthscsa.edu/dig/itdesc.html.

References

  1. Spencer K, Corbin SF, Lloyd DJ (2002) Mater Sci Eng A 325:394

    Article  Google Scholar 

  2. Lievers WB, Pilkey AK, Lloyd DJ (2003) Mater Sci Eng A 361:312

    Article  Google Scholar 

  3. Musulin I, Celliers OC (1990) In: Light metals 1990 proceedings of the 119th TMS annual meeting, pp 951–954

  4. Clode MP, Sheppard T (1990) Mater Sci Technol 6:755

    Article  CAS  Google Scholar 

  5. Onurlu S, Tekin A (1994) J Mater Sci 29:1652

    Article  CAS  Google Scholar 

  6. Zajac S, Hutchinson B, Johansson A, Gullman LO (1994) Mater Sci Technol 10:323

    Article  CAS  Google Scholar 

  7. Birol Y (2004) J Mater Process Tech 148:250

    Article  CAS  Google Scholar 

  8. Couto KBS, Claves SR, Van Geertruyden WH, Misiolek WZ, Goncalves M (2005) Mater Sci Tech 21:263

    Article  CAS  Google Scholar 

  9. Shabestari SG, Gruzleski JE (1995) Trans AFS 26:285

    Google Scholar 

  10. Mulazimoglu MH, Zaluska A, Gruzleski JE, Paray F (1996) Metall Mater Trans 27A:929

    Article  CAS  Google Scholar 

  11. Paray F, Kulunk B, Gruzleski J (1996) Mater Sci Tech 12:315

    Article  CAS  Google Scholar 

  12. Samuel FH, Samuel AM, Doty HW, Valtierra S (2001) Metall Mater Trans 32A:2061

    Article  CAS  Google Scholar 

  13. Bakke P, Pettersen K, Westengen H (2003) JOM 55:46

    Article  CAS  Google Scholar 

  14. Pekguleryuz MO, Kaya AA (2003) Adv Eng Mater 5:866

    Article  CAS  Google Scholar 

  15. Xia Z, Chen Z, Shi A, Mu N, Sun N (2002) J Electron Mater 31:564

    Article  CAS  Google Scholar 

  16. Lawrence CM, Wu CML, Yu DQ, Law CMT, Wang L (2002) J Electron Mater 3:921

    Google Scholar 

  17. Morris DG, Chao J, Garcia Oca C, Munoz-Morris MA (2003) Mater Sci Eng A 339:232

    Article  Google Scholar 

  18. Salazar M, Perez R, Rosas G (2003) Mater Sci Forum 426–432:1837

    Article  Google Scholar 

  19. Fu H, Xiao Q, Li Y (2005) Mater Sci Eng A 395:281

    Article  Google Scholar 

  20. Cao Z, Sun D, Du W, Zheng Z (1990) Aluminum alloys: their physical and mechanical properties. In: Proceedings of 2nd international conference, pp 312–314

  21. Ravi M, Pillai UTS, Pai BC, Damodaran AD, Dwarakadasa ES (2002) Metall Mater Trans 33A:391

    Article  CAS  Google Scholar 

  22. Bryant JD (1999) Metall Mater Trans 30A:2006

    Google Scholar 

  23. Abu Khatwa MK, Malakhov DV (2006) CALPHAD 30:159

    Article  Google Scholar 

  24. Datsko J, Yang CT (1960) J Eng Ind 82:309

    Article  Google Scholar 

  25. Liu Z, Chang YA (1999) Metall Mater Trans 30A:1081

    Article  CAS  Google Scholar 

  26. Hansen V, Hauback B, Sundberg M, Rumming C, Gjùnnes J (1998) Acta Crystallogr B 54:351

    Article  Google Scholar 

  27. Ashtari P, Tezuka H, Sato T (2004) Scr Mater 51:43

    Article  CAS  Google Scholar 

  28. Ashtari P, Tezuka H, Sato T (2005) Scr Mater 53:937

    Article  CAS  Google Scholar 

  29. Backerud L, Krol E, Tamminen J (1986) Solidification characteristics of aluminum alloys vol 1: wrought alloys. SkanAluminum, Sweden

    Google Scholar 

  30. Mondolfo LF (1978) Manganese in aluminium alloys. Page Bros. (Norwich) Ltd., England

    Google Scholar 

  31. Barlock J, Mondolfo L (1975) Z Metallkd 66:605

    CAS  Google Scholar 

  32. Zakharov AM, Gul’din IT, Arnol’d AA, Matsenko YuA (1989) Russ Metall 4:209

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of the Auto 21 research initiative. The in kind support of Novelis Inc. is also greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Hosseinifar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hosseinifar, M., Malakhov, D.V. Effect of Ce and La on microstructure and properties of a 6xxx series type aluminum alloy. J Mater Sci 43, 7157–7164 (2008). https://doi.org/10.1007/s10853-008-3022-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-3022-2

Keywords

Navigation