Advertisement

Journal of Materials Science

, Volume 44, Issue 5, pp 1344–1350 | Cite as

Characterization and biological application of YAG:Ce3+ nanophosphor modified with mercaptopropyl trimethoxy silane

  • Atsushi Tsukamoto
  • Tetsuhiko Isobe
Article

Abstract

We focus on the inorganic nanophosphor of YAG:Ce3+ nanoparticles as an alternative fluorescent probe instead of organic dyes for biological application. YAG:Ce3+ nanoparticles have the green emission at 530 nm under the excitation of blue light at 450 nm. Conventional biochemical equipments for organic dyes can be used for YAG:Ce3+ nanoparticles. SH groups were introduced by surface modification of YAG:Ce3+ nanoparticles with 3-mercaptopropyl trimethoxy silane, and were characterized by X-ray fluorescence analysis, FT-IR, and Ellman method. We demonstrated tagging avidin-immobilized agarose gel beads with biotinylated-YAG:Ce3+ nanoparticles, and tagging rabbit IgG-immobilized agarose gel beads with antirabbit IgG-immobilized YAG:Ce3+ nanoparticles.

Keywords

Biological Imaging Aluminum Isopropoxide Colloidal Aqueous Solution Ellman Method Ultrafiltration Tube 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

YAG:Ce3+

Yttrium aluminum garnet doped with Ce3+

APTMS

3-Aminopropyl trimethoxy silane

MPTMS

3-Mercaptopropyl trimethoxy silane

1,4-BD

1,4-Butanediol

EMCS

n-(6-Maleimidocaproyloxy) sulfosuccinimide

DTNB

5,5′-Dithio-bis-2-nitrobenzoic acid

TNB

5-Thio-2-nitrobenzoic acid

XRF

X-ray fluorescence analysis

UV–vis

Ultraviolet–visible

PL

Photoluminescence

PLE

Photoluminescence excitation

DLS

Dynamic light scattering method

References

  1. 1.
    Yang W, Zhang CG, Qu HY, Yang HH, Xu JG (2004) Anal Chim Acta 503:163. doi: 10.1016/j.aca.2003.10.045 CrossRefGoogle Scholar
  2. 2.
    Trau D, Yang W, Seydack M, Caruso F, Yu NT (2002) Anal Chem 21:5480. doi: 10.1021/ac0200522 CrossRefGoogle Scholar
  3. 3.
    Arya H, Kaul Z, Wadhwa R, Taira K, Hirano T, Kaul SC (2005) Biochem Biophys Res Commun 329:1173. doi: 10.1016/j.bbrc.2005.02.043 PubMedCrossRefGoogle Scholar
  4. 4.
    Bruchez M Jr, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Science 281:2013. doi: 10.1126/science.281.5385.2013 PubMedCrossRefGoogle Scholar
  5. 5.
    Mattoussi H, Mauro JM, Goldman ER, Anderson GP, Sundar VC, Mikulec FV, Bawendi MG (2000) J Am Chem Soc 122:12142. doi: 10.1021/ja002535y CrossRefGoogle Scholar
  6. 6.
    Murray CB, Norris DJ, Bawendi MG (1993) J Am Chem Soc 115:8706. doi: 10.1021/ja00072a025 CrossRefGoogle Scholar
  7. 7.
    Gerion D, Pinaud F, Williams SC, Parak WJ, Zanchet D, Weiss S, Alivisatos AP (2001) J Phys Chem B 105:8861. doi: 10.1021/jp0105488 CrossRefGoogle Scholar
  8. 8.
    Gaponik N, Talapin DV, Rogach AL, Hoppe K, Shevchenko EV, Kornowski A, Eychmuller A, Weller H (2002) J Phys Chem B 106:7177. doi: 10.1021/jp025541k CrossRefGoogle Scholar
  9. 9.
    Willman WY, Emmanuel C, Rebekah D, Vicki LC (2006) Biochem Biophys Res Commun 348:781. doi: 10.1016/j.bbrc.2006.07.160 CrossRefGoogle Scholar
  10. 10.
    Sung JC, Dusica M, Manasi J, Beate R, Steffen H, Francois MW (2007) Langmuir 23:1974. doi: 10.1021/la060093j CrossRefGoogle Scholar
  11. 11.
    Müller J, Lupton JM, Rogach AL, Feldmann J (2004) Appl Phys Lett 85:381. doi: 10.1063/1.1769585 CrossRefADSGoogle Scholar
  12. 12.
    Wijtmans M, Rosenthal SJ, Zwanenburg B, Poorter NA (2006) J Am Chem Soc 128:11720. doi: 10.1021/ja063562c PubMedCrossRefGoogle Scholar
  13. 13.
    Aldana J, Wang YA, Peng X (2002) J Am Chem Soc 123:8844. doi: 10.1021/ja016424q CrossRefGoogle Scholar
  14. 14.
    Celik A, Comelecoglu U, Yalin S (2005) Toxicol Ind Health 21:243. doi: 10.1191/0748233705th237oa PubMedCrossRefGoogle Scholar
  15. 15.
    Fischer B, Skreb Y (2001) Arh Hig Rada Toksikol 52:333PubMedGoogle Scholar
  16. 16.
    Bouden C, Damerval M (1982) Toxicol Eur Res 4:143Google Scholar
  17. 17.
    Kirchner C, Liedl T, Kudera S, Pellegrino T, Javier AM, Gaub HE, Stolzle S, Fertig N, Parak WJ (2005) Nano Lett 5:331. doi: 10.1021/nl047996m PubMedCrossRefGoogle Scholar
  18. 18.
    Abraham AW, Daniele G, Micha V, Jia S, Adam S, Shaowei C, Zhang JZ (2006) J Phys Chem B 110:5779. doi: 10.1021/jp055058k CrossRefGoogle Scholar
  19. 19.
    Kasuya R, Isobe T, Kuma H, Katano J (2005) J Phys Chem B 109:22126. doi: 10.1021/jp052753j PubMedCrossRefGoogle Scholar
  20. 20.
    Tomiki T, Akamine H, Gushiken M, Kinjoh Y, Miyazato M, Miyazato T, Toyokawa N, Hiraoka M, Hirata N, Ganaha Y, Futemma T (1991) J Phys Soc Jpn 60:2437. doi: 10.1143/JPSJ.60.2437 CrossRefADSGoogle Scholar
  21. 21.
    Asakura R, Isobe T, Kurokawa K, Aizawa H, Ohkubo M (2006) Anal Bioanal Chem 386:1641. doi: 10.1007/s00216-006-0814-6 PubMedCrossRefGoogle Scholar
  22. 22.
    Kasuya R, Isobe T, Kuma H (2006) J Alloy Compd 408–412:820. doi: 10.1016/j.jallcom.2005.01.066 CrossRefGoogle Scholar
  23. 23.
    Ellman GL (1959) Arch Biochem Biophys 82:70. doi: 10.1016/0003-9861(59)90090-6 PubMedCrossRefGoogle Scholar
  24. 24.
    Li Y-S, Wang Y, Tran T, Perkins A (2005) Spectrochim Acta A 61:3032. doi: 10.1016/j.saa.2004.11.031 CrossRefGoogle Scholar
  25. 25.
    Shen X-C, Fang X-Z, Zhou Y-H, Liang H (2004) Chem Lett 33:1468. doi: 10.1246/cl.2004.1468 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Applied Chemistry, Faculty of Science and TechnologyKeio UniversityKohoku-ku, YokohamaJapan

Personalised recommendations