Skip to main content
Log in

The Fe–Zn–Al–Cr system and its impact on the galvanizing process in chromium-added zinc baths

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The zinc rich corner of the Fe–Zn–Al–Cr at 460 °C is of interest for galvanizing because Al is a usual addition element in zinc bath, whereas Cr is naturally present because it is supplied by the stainless steel roller dipping in the Zn bath during the process. Indeed, it is used to understand the formation and growth mechanisms of the solid phases during galvanizing in Al and Cr-added Zn bath. By using additional experimental results in the Al–Cr–Zn and Fe–Zn–Al–Cr systems, the zinc rich corner of the Fe–Zn–Al–Cr system at 460 °C was determined with more accuracy. Thus, new equilibria between the liquid and quaternary phases have been pointed out, namely Al2Cr3 stabilized by Zn and enriched with Fe and τ1, the latter being isotypic with δ-FeZn9. This quaternary system was assessed with the CALPHAD method using the PARROT module of the Thermo-Calc Software. The liquid and solid solutions are described by the Redlich-Kister-Muggianu equations. All the modeled phases are considered as stoichiometric in the binary systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tang NY, Adams GR (1993) In: Marder AR (ed) Phys. metallurgy of zinc coated steel. TMS, Materials Park, OH, p 41

  2. Perrot P, Tissier JC, Dauphin JY (1992) Z Metallkd 83:785

    Google Scholar 

  3. Tang NY (2000) J Phase Equilib 21(1):70

    Article  CAS  Google Scholar 

  4. McDermitt JR, Kaye MH, Thompson WT (2007) Metall Mater Trans B 38B(2):215. doi:https://doi.org/10.1007/s11663-007-9028-3

    Article  Google Scholar 

  5. Gyurov S (1997) Z Metallkd 88(4):346

    CAS  Google Scholar 

  6. Tang NY, Yu XB, Coady FN (2003) Metall Mater Trans A 34A(3a):879

  7. Nakano J, Malakhov DV, Yamaguchi S, Purdy GR (2007) Calphad 31(1):125. doi:https://doi.org/10.1016/j.calphad.2006.09.003

    Article  CAS  Google Scholar 

  8. Giorgi ML, Guillot JB, Nicolle R (2001) Calphad 25(3):461. doi:https://doi.org/10.1016/S0364-5916(01)00065-7

    Article  CAS  Google Scholar 

  9. Bai K, Wu P (2002) J Alloy Compds 347:156

    Article  CAS  Google Scholar 

  10. Reumont G, Mathon M, Fourmentin R, Perrot P (2003) Z Metallkd 94:411

    Article  CAS  Google Scholar 

  11. Tang NY, Yu XB (2005) J Phase Equilib Diff 26(1):50

    Article  CAS  Google Scholar 

  12. Raghavan V (2007) J Phase Equilib Diff 28(4):383

    Article  CAS  Google Scholar 

  13. Fourmentin R, Avettand-Fenoel MN, Reumont G, Perrot P (2007) J Mater Sci 42:7934. doi:https://doi.org/10.1007/s10853-007-1521-1

    Article  CAS  Google Scholar 

  14. Watanabe H, Sato E (1969) Keikinzoku 19(11):499

    Google Scholar 

  15. Reumont G, Perrot P (2003) J Phase Equilib 24:50

    Article  CAS  Google Scholar 

  16. David N (2001) Thesis, University Henri Poincaré, Nancy

  17. Reumont G (1990) Thesis, Université des Sciences et Technologies de Lille

  18. Sundman B, Jansson B, Anderson JO (1985) Calphad 9:153. doi:https://doi.org/10.1016/0364-5916(85)90021-5

    Article  CAS  Google Scholar 

  19. Dinsdale AT (1991) Calphad 15:317. doi:https://doi.org/10.1016/0364-5916(91)90030-N

    Article  CAS  Google Scholar 

  20. Massalski TB (1990) Binary alloy phase diagram, 2nd edn. ASM, Materials Park, OH

  21. Raghavan V (1992) Phase diagrams of ternary iron alloys, vol 6A. Indian Inst. Metals, Calcutta

  22. Moser Z, Heldt LA (1992) J Phase Equilib 13(2):172

    Article  CAS  Google Scholar 

  23. Grushko B, Przepiorzynski B, Pavlyuchkov D (2008) J Alloy Compds 454:214

    Article  CAS  Google Scholar 

  24. Villars P, Calvert LD (1991) Pearson’s handbook of crystallographic data for intermetallic phases, 2nd edn. ASM, Materials Park, OH

  25. Grushko B, Kowalska-Strzeciwilk E, Przepiorzynski B, Surowiec M (2005) J Alloy Compds 402:98

    Article  CAS  Google Scholar 

  26. Saunders N, Rivlin VG (1987) Z Metallkd 78:795

    CAS  Google Scholar 

Download references

Acknowledgement

The authors would like to thank UMICORE Research and the ARCELOR Research Centre (OCAS) for their financial support and their interest in the development of this technical innovation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Perrot.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fourmentin, R., Avettand-Fènoël, MN., Reumont, G. et al. The Fe–Zn–Al–Cr system and its impact on the galvanizing process in chromium-added zinc baths. J Mater Sci 43, 6872–6880 (2008). https://doi.org/10.1007/s10853-008-3011-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-3011-5

Keywords

Navigation