Journal of Materials Science

, Volume 44, Issue 5, pp 1374–1380 | Cite as

ζ-potential characterization of collagen and bovine serum albumin modified silica nanoparticles: a comparative study

  • William J. Znidarsic
  • I.-Wei Chen
  • V. Prasad Shastri


In this study, bovine serum albumin (BSA) and collagen (COLL) were adsorbed independent of one another, onto the surface of silica nanoparticles (SNPs) at pH’s where the ζ-potential of the proteins were equal in magnitude, but opposite to the SNP surface to ascertain the differences in surface coverage and conformation in the adsorbed layer. In both systems, increasing the concentration of free protein resulted in an increase in protein surface coverage and ζ values, with ζ values approaching that of native protein at high surface coverage. However, a lower critical charge reversal concentration range was measured for COLL relative to BSA (COLL: 0–25 μg/mL, BSA: 25–90 μg/mL). Additionally, a considerable difference in ζ for adsorbed protein versus free protein was observed. These results when interpreted in terms of the theory of Ottewill and Watanabe indicate a higher Gibbs energy of association for COLL versus BSA on SNP surfaces, accompanied by perturbation in protein structure.


Silica Nanoparticles Adsorbed Protein Free Molecule Free Protein Coated Particle 



This work was supported in part by a GANN fellowship to WJZ, a research grant from the Nanotechnology Institute (NTI) via Ben Franklin Technology Partners of Northeast Pennsylvania to VPS and IWC and the Vanderbilt Institute of Chemical Biology (VICB). The authors thank Ashwath Jayagopal for help with the confocal images of the protein-coated SNP and Dr. Christopher Pino for helpful suggestions.


  1. 1.
    Lipski AM, Jaquiery C, Choi H, Eberli D, Stevens M, Martin I et al (2007) Adv Mater 19:553. doi: 10.1002/adma.200502617 CrossRefGoogle Scholar
  2. 2.
    Lipski AM, Pino CJ, Haselton F, Chen I-W, Shastri VP (2008) Biomaterials 29(28):3836. doi: 10.1016/j.biomaterials.2008.06.002 CrossRefGoogle Scholar
  3. 3.
    Stöber W, Fink A, Bohn E (1968) J Colloid Interface Sci 26:62. doi: 10.1016/0021-9797(68)90272-5 CrossRefGoogle Scholar
  4. 4.
    Iler RK (1979) The chemistry of silica-solubility, polymerization, colloidal and surface properties, and biochemistry. Wiley & Sons, ChichesterGoogle Scholar
  5. 5.
    Deyme M, Baszkin A, Proust JE, Perez E, Boissonnade MM (1986) J Biomed Mater Res 20:951. doi: 10.1002/jbm.820200710 PubMedCrossRefGoogle Scholar
  6. 6.
    Kucharz EJ (1992) The collagens: biochemistry and pathophysiology. Springer-Verlag, BerlinGoogle Scholar
  7. 7.
    Ying P, Yu Y, Jin G, Tao Z (2003) Colloid Surf B Biointerf 32:1. doi: 10.1016/S0927-7765(02)00133-9 CrossRefGoogle Scholar
  8. 8.
    Norde W, Lyklema J (1978) J Colloid Interface Sci 66:257. doi: 10.1016/0021-9797(78)90303-X CrossRefGoogle Scholar
  9. 9.
    Norde W, Lyklema J (1978) J Colloid Interface Sci 66:266. doi: 10.1016/0021-9797(78)90304-1 CrossRefGoogle Scholar
  10. 10.
    Norde W, Lyklema J (1978) J Colloid Interface Sci 66:285. doi: 10.1016/0021-9797(78)90306-5 CrossRefGoogle Scholar
  11. 11.
    Micro BCA Protein Assay Kit Instructions. Thermo Scientific Life Science Research ProductsGoogle Scholar
  12. 12.
    Krajewski A, Piancastelli A, Malavolti R (1998) Biomaterials 19:637. doi: 10.1016/S0142-9612(97)00153-1 PubMedCrossRefGoogle Scholar
  13. 13.
    Horbett TA (1993) Cardiovasc Pathol 2:S137. doi: 10.1016/1054-8807(93)90054-6 CrossRefGoogle Scholar
  14. 14.
    Ottewill RH, Watanabe A (1960) Colloid Polym Sci 170:132. doi: 10.1007/BF01525172 Google Scholar
  15. 15.
    Barbani N, Lazzeri L, Cristallini C, Cascone MG, Polacco G, Pizzirani G (1999) J Appl Polym Sci 72:971. doi:10.1002/(SICI)1097-4628(19990516)72:7<971::AID-APP13>3.0.CO;2-NCrossRefGoogle Scholar
  16. 16.
    Norde W, Lyklema J (1978) J Colloid Interface Sci 66:277. doi: 10.1016/0021-9797(78)90305-3 CrossRefGoogle Scholar
  17. 17.
    Keresztes Z, Rouxhet PG, Remacle C, Dupont-Gillain C (2006) J Biomed Mater Res A 76:223. doi: 10.1002/jbm.a.30472 PubMedGoogle Scholar
  18. 18.
    Knowles GC, McKeown M, Sodek J, McCulloch CA (1991) J Cell Sci 98(Pt 4):551PubMedGoogle Scholar
  19. 19.
    Sutoh K, Noda H (1974) Biopolymers 13:2461. doi: 10.1002/bip.1974.360131206 CrossRefGoogle Scholar
  20. 20.
    Norde W, Lyklema J (1978) J Colloid Interface Sci 66:295. doi: 10.1016/0021-9797(78)90307-7 CrossRefGoogle Scholar
  21. 21.
    Ying P, Jin G, Tao Z (2004) Colloid Surf B Biointerf 33:259. doi: 10.1016/j.colsurfb.2003.10.015 CrossRefGoogle Scholar
  22. 22.
    Hunter RJ (1981) Zeta potential in colloidal science. Academic Press, New YorkGoogle Scholar
  23. 23.
    Taboada P, Mosquera V, Ruso JM, Sarmiento F, Jones MN (2000) Langmuir 16:6795. doi: 10.1021/la9912904 CrossRefGoogle Scholar
  24. 24.
    Norde W, Anusiem ACI (1992) Colloid Surf 66:73. doi: 10.1016/0166-6622(92)80122-I CrossRefGoogle Scholar
  25. 25.
    Norde W, Favier JP (1992) Colloid Surf 64:87. doi: 10.1016/0166-6622(92)80164-W CrossRefGoogle Scholar
  26. 26.
    PamuIa E, De Cupereb V, Dufrêneb YF, Rouxhet PG (2004) J Colloid Interface Sci 271:80. doi: 10.1016/j.jcis.2003.11.012 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • William J. Znidarsic
    • 1
  • I.-Wei Chen
    • 1
  • V. Prasad Shastri
    • 1
    • 2
  1. 1.Department of Materials ScienceUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.Department of Biomedical EngineeringVanderbilt UniversityNashvilleUSA

Personalised recommendations