Skip to main content
Log in

Effect of Gd-doping on thermoelectric properties of Ca3Co4O9+δ ceramics

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A series of Ca3−xGdxCo4O9+δ precursor powders were synthesized by the polyacrylamide gel method, and their ceramics were obtained by the Spark Plasma Sintering (SPS). There were lots of defects in the sheet-like grains from SEM and TEM observations. The electrical and the thermal transport properties were obviously affected by the material microstructure. The small polaron hopping conduction mechanism was determined above 600 K, and the hopping activation energy increased with the increase of doping contents. It was found that the Seebeck coefficient and the resistivity of doped samples were markly enhanced due to the impurity compensation effect, and their thermal conductivities were decreased due to the defects scattering. The maximum figure of merit of ZT = 0.24 at 973 K was obtained for Ca2.7Gd0.3Co4O9+δ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Park K, Kim KK, Seong JK (2007) Mater Lett 61:4759. doi:https://doi.org/10.1016/j.matlet.2007.03.021

    Article  CAS  Google Scholar 

  2. Zhang LH, Tosh T, Norlyuki O et al (2007) Mater Trans 48:2088. doi:https://doi.org/10.2320/matertrans.E-MRA2007836

    Article  CAS  Google Scholar 

  3. Park K, Ko KY, Seong JK et al (2007) J Eur Ceram Soc 27:3735. doi:https://doi.org/10.1016/j.jeurceramsoc.2007.02.030

    Article  CAS  Google Scholar 

  4. Yasukawa M, Itoh S, Kono T (2005) J Alloy Compd 390:250. doi:https://doi.org/10.1016/j.jallcom.2004.07.061

    Article  CAS  Google Scholar 

  5. Androulakis J, Hsu KF, Pcionek R (2006) Adv Mater 18:1170. doi:https://doi.org/10.1002/adma.200502770

    Article  CAS  Google Scholar 

  6. Terasaki I, Sasago Y, Uchinokura K (1997) Phys Rev B 56:R12685. doi:https://doi.org/10.1103/PhysRevB.56.R12685

    Article  CAS  Google Scholar 

  7. Masset AC, Michel C, Maignan A et al (2000) Phys Rev B 62:166. doi:https://doi.org/10.1103/PhysRevB.62.166

    Article  CAS  Google Scholar 

  8. Koshibae W, Tsutsui K, Maekawa S (2000) Phys Rev B 62:6869. doi:https://doi.org/10.1103/PhysRevB.62.6869

    Article  CAS  Google Scholar 

  9. Shikano M, Funahashi R (2003) Appl Phys Lett 82:1851. doi:https://doi.org/10.1063/1.1562337

    Article  CAS  Google Scholar 

  10. Creon N, Perez O, Hadermann J (2006) Chem Mater 18:5355. doi:https://doi.org/10.1021/cm061163a

    Article  CAS  Google Scholar 

  11. Prevel M, Perez O, Noudem JG (2007) Solid State Sci 9:231. doi:https://doi.org/10.1016/j.solidstatesciences.2007.01.003

    Article  CAS  Google Scholar 

  12. Matsubara I, Funahashi R, Tomonari T (2001) J Appl Phys 90:462. doi:https://doi.org/10.1063/1.1378056

    Article  CAS  Google Scholar 

  13. Asahi R, Sugiyama J, Tani T (2002) Phys Rev B 66:155103. doi:https://doi.org/10.1103/PhysRevB.66.155103

    Article  Google Scholar 

  14. Wang DL, Chen LD, Wang Q et al (2004) J Alloy Compd 376:58. doi:https://doi.org/10.1016/j.jallcom.2003.12.018

    Article  CAS  Google Scholar 

  15. Kobayashi T, Takizawa H, Endo T (1991) J Solid State Chem 92:116. doi:https://doi.org/10.1016/0022-4596(91)90248-G

    Article  CAS  Google Scholar 

  16. Wang Y, Nyrissa S, Cava RJ et al (2003) Nature 423:425. doi:https://doi.org/10.1038/nature01639

    Article  CAS  Google Scholar 

  17. Takeuchi T (2004) Phys Rev B 69:125410. doi:https://doi.org/10.1103/PhysRevB.69.125410

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the financial supports from National Basic Research Program of China (973 program) under Grant No. 2007CB607502, the National Natural Science Foundation of China (NSFC) of No. 50801054 and 50772026, and Natural Science Key Fund of Heilongjiang Province in China (grant No. ZJG0605-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Q. Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, H.Q., Zhao, X.B., Liu, F. et al. Effect of Gd-doping on thermoelectric properties of Ca3Co4O9+δ ceramics. J Mater Sci 43, 6933–6937 (2008). https://doi.org/10.1007/s10853-008-2990-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2990-6

Keywords

Navigation